faf3aa876462323f2fa721ebd633752d6489808f,sru/modules.py,SRU,forward,#SRU#Any#Any#Any#,536
Before Change
// unpack packed, if input is packed. packing and then unpacking will be slower than not
// packing at all, but makes SRU usage compatible with nn.RNN usage
orig_input = input
if isinstance(orig_input, PackedSequence):
input, batch_sizes, sorted_indices, unsorted_indices = input
length = input.size(0)
batch_size = input.size(1)
mask_pad = torch.arange(batch_size,
device=batch_sizes.device).expand(length, batch_size)
mask_pad = (mask_pad >= batch_sizes.view(length, 1)).contiguous()
else:
length = input.size(0)
batch_size = input.size(1)
batch_sizes = None
sorted_indices = None
unsorted_indices = None
// The dimensions of `input` should be: `(sequence_length, batch_size, input_size)`.
if input.dim() != 3:
raise ValueError("There must be 3 dimensions for (length, batch_size, input_size)")
if c0 is None:
After Change
orig_input = input
if isinstance(orig_input, PackedSequence):
input, lengths = nn.utils.rnn.pad_packed_sequence(input)
max_length = lengths.max().item()
mask_pad = torch.ByteTensor([[0] * l + [1] * (max_length - l) for l in lengths.tolist()])
mask_pad = mask_pad.to(input.device).transpose(0, 1).contiguous()
// The dimensions of `input` should be: `(sequence_length, batch_size, input_size)`.
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances
Project Name: asappresearch/sru
Commit Name: faf3aa876462323f2fa721ebd633752d6489808f
Time: 2020-09-18
Author: taolei@csail.mit.edu
File Name: sru/modules.py
Class Name: SRU
Method Name: forward
Project Name: arraiy/torchgeometry
Commit Name: ab9c4f8474ca744c7e67822fa21d408d0b0ae2d0
Time: 2020-04-18
Author: sj8716643@126.com
File Name: kornia/augmentation/functional.py
Class Name:
Method Name: apply_rotation
Project Name: BindsNET/bindsnet
Commit Name: 996804c052aca22d54a5206aab5c6f33552b16f7
Time: 2019-10-05
Author: hi@sharath.pro
File Name: bindsnet/pipeline/action.py
Class Name:
Method Name: select_softmax