d383403c8e62df942d7fc54da8116ff98cc0b35a,GPy/examples/classification.py,,sparse_crescent_data,#Any#Any#,158

Before Change


    Y[Y.flatten()==-1]=0

    // Kernel object
    kernel = GPy.kern.rbf(data["X"].shape[1]) + GPy.kern.white(data["X"].shape[1])

    // Likelihood object
    distribution = GPy.likelihoods.likelihood_functions.binomial()
    likelihood = GPy.likelihoods.EP(Y, distribution)

After Change



    m = GPy.models.sparse_GP_classification(data["X"], Y)
    m.ensure_default_constraints()
    m[".*len"] = 10.
    m.update_likelihood_approximation()
    m.optimize()
    print(m)
    m.plot()
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 5

Instances


Project Name: SheffieldML/GPy
Commit Name: d383403c8e62df942d7fc54da8116ff98cc0b35a
Time: 2013-06-04
Author: acq11ra@sheffield.ac.uk
File Name: GPy/examples/classification.py
Class Name:
Method Name: sparse_crescent_data


Project Name: SheffieldML/GPy
Commit Name: adb8a98cb36e2718a1b4eb5e2ae6f8fe1d8d1fe2
Time: 2013-06-05
Author: james.hensman@gmail.com
File Name: GPy/examples/regression.py
Class Name:
Method Name: multiple_optima


Project Name: SheffieldML/GPy
Commit Name: d383403c8e62df942d7fc54da8116ff98cc0b35a
Time: 2013-06-04
Author: acq11ra@sheffield.ac.uk
File Name: GPy/examples/classification.py
Class Name:
Method Name: sparse_toy_linear_1d_classification