70888e622cf22e66188a74a0c29cf8d5f51ad9f9,basic/model.py,Model,_build_loss,#Model#,263
Before Change
N, M, JX, JQ, VW, VC = \
config.batch_size, config.max_num_sents, config.max_sent_size, \
config.max_ques_size, config.word_vocab_size, config.char_vocab_size
ce_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
self.logits, tf.cast(tf.reshape(self.y, [-1, M * JX]), "float")))
tf.add_to_collection("losses", ce_loss)
ce_loss2 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
self.logits2, tf.cast(tf.reshape(self.y2, [-1, M * JX]), "float")))
tf.add_to_collection("losses", ce_loss2)
After Change
N, M, JX, JQ, VW, VC = \
config.batch_size, config.max_num_sents, config.max_sent_size, \
config.max_ques_size, config.word_vocab_size, config.char_vocab_size
loss_mask = tf.reduce_max(tf.cast(self.q_mask, "float"), 1)
losses = tf.nn.softmax_cross_entropy_with_logits(
self.logits, tf.cast(tf.reshape(self.y, [-1, M * JX]), "float"))
ce_loss = tf.reduce_mean(loss_mask * losses)
tf.add_to_collection("losses", ce_loss)
ce_loss2 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
self.logits2, tf.cast(tf.reshape(self.y2, [-1, M * JX]), "float")))
tf.add_to_collection("losses", ce_loss2)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 6
Instances
Project Name: wenwei202/iss-rnns
Commit Name: 70888e622cf22e66188a74a0c29cf8d5f51ad9f9
Time: 2016-10-23
Author: seominjoon@gmail.com
File Name: basic/model.py
Class Name: Model
Method Name: _build_loss
Project Name: dhlab-epfl/dhSegment
Commit Name: 3d7a7eac0c0b3e8718bfe9c83df323a37fb2f546
Time: 2018-01-17
Author: seg.benoit@gmail.com
File Name: doc_seg/model.py
Class Name:
Method Name: model_fn
Project Name: jakeret/tf_unet
Commit Name: 31516c4984224611174203a9822e102f94def3ac
Time: 2017-01-08
Author: jakeret@phys.ethz.ch
File Name: tf_unet/unet.py
Class Name: Unet
Method Name: _get_cost