9e62f772ee6e7e1b346640533f5122154f102b5a,code/traditional/MEDA/MEDA.py,,,#,140
Before Change
src_domain, tar_domain = scipy.io.loadmat(src), scipy.io.loadmat(tar)
Xs, Ys, Xt, Yt = src_domain["feas"], src_domain["label"], tar_domain["feas"], tar_domain["label"]
meda = MEDA(Xs, Ys, Xt, Yt, kernel_type="rbf", dim=20, lamb=10, rho=1.0, eta=0.1, p=10, gamma=1, T=10)
acc, ypre, list_acc = meda.fit_predict()
print(acc)
After Change
src_domain, tar_domain = scipy.io.loadmat(src), scipy.io.loadmat(tar)
Xs, Ys, Xt, Yt = src_domain["feas"], src_domain["label"], tar_domain["feas"], tar_domain["label"]
meda = MEDA(kernel_type="rbf", dim=20, lamb=10, rho=1.0, eta=0.1, p=10, gamma=1, T=10)
acc, ypre, list_acc = meda.fit_predict(Xs, Ys, Xt, Yt)
print(acc)
In pattern: SUPERPATTERN
Frequency: 4
Non-data size: 6
Instances
Project Name: jindongwang/transferlearning
Commit Name: 9e62f772ee6e7e1b346640533f5122154f102b5a
Time: 2018-11-15
Author: jindongwang@outlook.com
File Name: code/traditional/MEDA/MEDA.py
Class Name:
Method Name:
Project Name: jindongwang/transferlearning
Commit Name: 9e62f772ee6e7e1b346640533f5122154f102b5a
Time: 2018-11-15
Author: jindongwang@outlook.com
File Name: code/traditional/JDA/JDA.py
Class Name:
Method Name:
Project Name: jindongwang/transferlearning
Commit Name: 9e62f772ee6e7e1b346640533f5122154f102b5a
Time: 2018-11-15
Author: jindongwang@outlook.com
File Name: code/traditional/BDA/BDA.py
Class Name:
Method Name:
Project Name: jindongwang/transferlearning
Commit Name: 9e62f772ee6e7e1b346640533f5122154f102b5a
Time: 2018-11-15
Author: jindongwang@outlook.com
File Name: code/traditional/TCA/TCA.py
Class Name:
Method Name: