188ca433f68c85b00a4efb7ed0491ca9c57412fe,pythonds/des/meta_des.py,METADES,__init__,#METADES#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#Any#,71
Before Change
with_IH=with_IH, safe_k=safe_k, IH_rate=IH_rate, aknn=aknn)
mode.lower()
assert Hc > 0.5
assert gamma > 0
assert mode in ["selection", "hybrid", "weighting"]
self.name = "META-des"
self.version = mode
self.kp = kp
After Change
self.meta_training_target = []
self.n_meta_features = (self.k * 2) + self.Kp + 2
self.bins = np.linspace(0.1, 1, 10)
def fit(self, X, y):
Prepare the DS model by setting the KNN algorithm and
pre-processing the information required to apply the DS
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances Project Name: scikit-learn-contrib/DESlib
Commit Name: 188ca433f68c85b00a4efb7ed0491ca9c57412fe
Time: 2018-01-11
Author: rafaelmenelau@gmail.com
File Name: pythonds/des/meta_des.py
Class Name: METADES
Method Name: __init__
Project Name: arraiy/torchgeometry
Commit Name: 5c9356d3dbcd44c3cd7f833651a3b542250c2699
Time: 2020-11-30
Author: edgar.riba@gmail.com
File Name: test/enhance/test_core.py
Class Name: TestAddWeighted
Method Name: test_gradcheck
Project Name: scikit-learn-contrib/DESlib
Commit Name: de679bde877454c157ac6a054e6b096631a7427c
Time: 2018-01-11
Author: rafaelmenelau@gmail.com
File Name: pythonds/des/meta_des.py
Class Name: METADES
Method Name: __init__