8e4926a58d0ff919db9cb85ac9530053eda62190,models/VGGBinomialDropout.py,VGGBinomialDropout,_inference,#VGGBinomialDropout#Any#Any#Any#Any#Any#,20
Before Change
with tf.variable_scope(self.__class__.__name__):
with tf.variable_scope("64"):
with tf.variable_scope("conv1"):
conv1 = tf.nn.relu(
utils.conv_layer(
images, [3, 3, 3, 64], 1, "SAME", wd=l2_penalty))
if train_phase:
conv1 = utils.binomial_dropout(conv1, 0.7)
with tf.variable_scope("conv2"):
conv2 = tf.nn.relu(
utils.conv_layer(
conv1, [3, 3, 64, 64], 1, "SAME", wd=l2_penalty))
if train_phase:
conv2 = utils.binomial_dropout(conv2, 0.6)
with tf.variable_scope("pool1"):
pool1 = tf.nn.max_pool(
conv2,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding="VALID")
with tf.variable_scope("128"):
with tf.variable_scope("conv3"):
conv3 = tf.nn.relu(
utils.conv_layer(
pool1, [3, 3, 64, 128], 1, "SAME", wd=l2_penalty))
if train_phase:
conv3 = utils.binomial_dropout(conv3, 0.6)
with tf.variable_scope("conv4"):
conv4 = tf.nn.relu(
utils.conv_layer(
conv3, [3, 3, 128, 128], 1, "SAME", wd=l2_penalty))
if train_phase:
conv4 = utils.binomial_dropout(conv4, 0.6)
with tf.variable_scope("pool2"):
pool2 = tf.nn.max_pool(
conv4,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding="VALID")
with tf.variable_scope("256"):
with tf.variable_scope("conv5"):
conv5 = tf.nn.relu(
utils.conv_layer(
pool2, [3, 3, 128, 256], 1, "SAME", wd=l2_penalty))
if train_phase:
conv5 = utils.binomial_dropout(conv5, 0.6)
with tf.variable_scope("conv6"):
conv6 = tf.nn.relu(
utils.conv_layer(
conv5, [3, 3, 256, 256], 1, "SAME", wd=l2_penalty))
if train_phase:
conv6 = utils.binomial_dropout(conv6, 0.6)
with tf.variable_scope("conv7"):
conv7 = tf.nn.relu(
utils.conv_layer(
conv6, [3, 3, 256, 256], 1, "SAME", wd=l2_penalty))
if train_phase:
conv7 = utils.binomial_dropout(conv7, 0.6)
with tf.variable_scope("pool3"):
pool3 = tf.nn.max_pool(
conv7,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding="VALID")
with tf.variable_scope("512"):
with tf.variable_scope("conv8"):
conv8 = tf.nn.relu(
utils.conv_layer(
pool3, [3, 3, 256, 512], 1, "SAME", wd=l2_penalty))
if train_phase:
conv8 = utils.binomial_dropout(conv8, 0.6)
with tf.variable_scope("conv9"):
conv9 = tf.nn.relu(
utils.conv_layer(
conv8, [3, 3, 512, 512], 1, "SAME", wd=l2_penalty))
if train_phase:
conv9 = utils.binomial_dropout(conv9, 0.6)
with tf.variable_scope("conv10"):
conv10 = tf.nn.relu(
utils.conv_layer(
conv9, [3, 3, 512, 512], 1, "SAME", wd=l2_penalty))
if train_phase:
conv10 = utils.binomial_dropout(conv10, 0.6)
with tf.variable_scope("pool4"):
pool4 = tf.nn.max_pool(
conv10,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding="VALID")
with tf.variable_scope("512b2"):
with tf.variable_scope("conv11"):
conv11 = tf.nn.relu(
utils.conv_layer(
pool4, [3, 3, 512, 512], 1, "SAME", wd=l2_penalty))
if train_phase:
conv11 = utils.binomial_dropout(conv11, 0.6)
with tf.variable_scope("conv12"):
conv12 = tf.nn.relu(
utils.conv_layer(
conv11, [3, 3, 512, 512], 1, "SAME", wd=l2_penalty))
if train_phase:
conv12 = utils.binomial_dropout(conv12, 0.6)
with tf.variable_scope("conv13"):
conv13 = tf.nn.relu(
utils.conv_layer(
conv12, [3, 3, 512, 512], 1, "SAME", wd=l2_penalty))
if train_phase:
conv13 = utils.binomial_dropout(conv13, 0.6)
with tf.variable_scope("pool5"):
pool5 = tf.nn.max_pool(
conv13,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding="VALID")
pool5 = tf.reshape(pool5, [-1, 512])
with tf.variable_scope("fc"):
fc1 = tf.nn.relu(
utils.fc_layer(
pool5, [512, 512], wd=l2_penalty))
if train_phase:
fc1 = utils.binomial_dropout(fc1, 0.5)
After Change
with tf.variable_scope(self.__class__.__name__):
with tf.variable_scope("64"):
with tf.variable_scope("conv1"):
conv1 = utils.conv_layer(
images, [3, 3, 3, 64],
1,
"SAME",
activation=tf.nn.relu,
wd=l2_penalty)
if train_phase:
conv1 = utils.binomial_dropout(conv1, 0.7)
with tf.variable_scope("conv2"):
conv2 = utils.conv_layer(
conv1, [3, 3, 64, 64],
1,
"SAME",
activation=tf.nn.relu,
wd=l2_penalty)
if train_phase:
conv2 = utils.binomial_dropout(conv2, 0.6)
with tf.variable_scope("pool1"):
pool1 = tf.nn.max_pool(
conv2,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding="VALID")
with tf.variable_scope("128"):
with tf.variable_scope("conv3"):
conv3 = utils.conv_layer(
pool1, [3, 3, 64, 128],
1,
"SAME",
activation=tf.nn.relu,
wd=l2_penalty)
if train_phase:
conv3 = utils.binomial_dropout(conv3, 0.6)
with tf.variable_scope("conv4"):
conv4 = utils.conv_layer(
conv3, [3, 3, 128, 128],
1,
"SAME",
activation=tf.nn.relu,
wd=l2_penalty)
if train_phase:
conv4 = utils.binomial_dropout(conv4, 0.6)
with tf.variable_scope("pool2"):
pool2 = tf.nn.max_pool(
conv4,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding="VALID")
with tf.variable_scope("256"):
with tf.variable_scope("conv5"):
conv5 = utils.conv_layer(
pool2, [3, 3, 128, 256],
1,
"SAME",
activation=tf.nn.relu,
wd=l2_penalty)
if train_phase:
conv5 = utils.binomial_dropout(conv5, 0.6)
with tf.variable_scope("conv6"):
conv6 = utils.conv_layer(
conv5, [3, 3, 256, 256],
1,
"SAME",
activation=tf.nn.relu,
wd=l2_penalty)
if train_phase:
conv6 = utils.binomial_dropout(conv6, 0.6)
with tf.variable_scope("conv7"):
conv7 = utils.conv_layer(
conv6, [3, 3, 256, 256],
1,
"SAME",
activation=tf.nn.relu,
wd=l2_penalty)
if train_phase:
conv7 = utils.binomial_dropout(conv7, 0.6)
with tf.variable_scope("pool3"):
pool3 = tf.nn.max_pool(
conv7,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding="VALID")
with tf.variable_scope("512"):
with tf.variable_scope("conv8"):
conv8 = utils.conv_layer(
pool3, [3, 3, 256, 512],
1,
"SAME",
activation=tf.nn.relu,
wd=l2_penalty)
if train_phase:
conv8 = utils.binomial_dropout(conv8, 0.6)
with tf.variable_scope("conv9"):
conv9 = utils.conv_layer(
conv8, [3, 3, 512, 512],
1,
"SAME",
activation=tf.nn.relu,
wd=l2_penalty)
if train_phase:
conv9 = utils.binomial_dropout(conv9, 0.6)
with tf.variable_scope("conv10"):
conv10 = utils.conv_layer(
conv9, [3, 3, 512, 512],
1,
"SAME",
activation=tf.nn.relu,
wd=l2_penalty)
if train_phase:
conv10 = utils.binomial_dropout(conv10, 0.6)
with tf.variable_scope("pool4"):
pool4 = tf.nn.max_pool(
conv10,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding="VALID")
with tf.variable_scope("512b2"):
with tf.variable_scope("conv11"):
conv11 = utils.conv_layer(
pool4, [3, 3, 512, 512],
1,
"SAME",
activation=tf.nn.relu,
wd=l2_penalty)
if train_phase:
conv11 = utils.binomial_dropout(conv11, 0.6)
with tf.variable_scope("conv12"):
conv12 = utils.conv_layer(
conv11, [3, 3, 512, 512],
1,
"SAME",
activation=tf.nn.relu,
wd=l2_penalty)
if train_phase:
conv12 = utils.binomial_dropout(conv12, 0.6)
with tf.variable_scope("conv13"):
conv13 = utils.conv_layer(
conv12, [3, 3, 512, 512],
1,
"SAME",
activation=tf.nn.relu,
wd=l2_penalty)
if train_phase:
conv13 = utils.binomial_dropout(conv13, 0.6)
with tf.variable_scope("pool5"):
pool5 = tf.nn.max_pool(
conv13,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding="VALID")
pool5 = tf.reshape(pool5, [-1, 512])
with tf.variable_scope("fc"):
fc1 = utils.fc_layer(
pool5, [512, 512], activation=tf.nn.relu, wd=l2_penalty)
if train_phase:
fc1 = utils.binomial_dropout(fc1, 0.5)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 60
Instances
Project Name: galeone/dynamic-training-bench
Commit Name: 8e4926a58d0ff919db9cb85ac9530053eda62190
Time: 2016-12-09
Author: nessuno@nerdz.eu
File Name: models/VGGBinomialDropout.py
Class Name: VGGBinomialDropout
Method Name: _inference
Project Name: galeone/dynamic-training-bench
Commit Name: 8e4926a58d0ff919db9cb85ac9530053eda62190
Time: 2016-12-09
Author: nessuno@nerdz.eu
File Name: models/VGGDropout.py
Class Name: VGGDropout
Method Name: _inference
Project Name: galeone/dynamic-training-bench
Commit Name: 8e4926a58d0ff919db9cb85ac9530053eda62190
Time: 2016-12-09
Author: nessuno@nerdz.eu
File Name: models/VGGDirectDropout.py
Class Name: VGGDirectDropout
Method Name: _inference