abc07f4efd816ba4e82221e69bee752f5c876148,models/experimental/densenet_keras/densenet_keras_imagenet.py,ImageNetInput,dataset_parser,#ImageNetInput#Any#,113

Before Change


        "image/format": tf.FixedLenFeature((), tf.string, "jpeg"),
        "image/class/label": tf.FixedLenFeature([], tf.int64, -1),
        "image/class/text": tf.FixedLenFeature([], tf.string, ""),
        "image/object/bbox/xmin": tf.VarLenFeature(dtype=tf.float32),
        "image/object/bbox/ymin": tf.VarLenFeature(dtype=tf.float32),
        "image/object/bbox/xmax": tf.VarLenFeature(dtype=tf.float32),
        "image/object/bbox/ymax": tf.VarLenFeature(dtype=tf.float32),
        "image/object/class/label": tf.VarLenFeature(dtype=tf.int64),
    }

After Change


  def dataset_parser(self, value):
    Parse an ImageNet record from a serialized string Tensor.
    keys_to_features = {
        "image/encoded": tf.FixedLenFeature((), tf.string, ""),
        "image/format": tf.FixedLenFeature((), tf.string, "jpeg"),
        "image/class/label": tf.FixedLenFeature([], tf.int64, -1),
        "image/class/text": tf.FixedLenFeature([], tf.string, ""),
        "image/object/bbox/xmin": tf.VarLenFeature(dtype=tf.float32),
        "image/object/bbox/ymin": tf.VarLenFeature(dtype=tf.float32),
        "image/object/bbox/xmax": tf.VarLenFeature(dtype=tf.float32),
        "image/object/bbox/ymax": tf.VarLenFeature(dtype=tf.float32),
        "image/object/class/label": tf.VarLenFeature(dtype=tf.int64),
    }

    parsed = tf.parse_single_example(value, keys_to_features)
    image = tf.reshape(parsed["image/encoded"], shape=[])

    image = tf.image.decode_jpeg(image, channels=3)
    image = tf.image.convert_image_dtype(image, dtype=tf.float32)

    image = self.image_preprocessing_fn(
        image=image,
        output_height=224,
        output_width=224,
        is_training=self.is_training)

    label = tf.cast(
        tf.reshape(parsed["image/class/label"], shape=[]), dtype=tf.int32)

    return image, tf.one_hot(label, _LABEL_CLASSES)

  def input_fn(self):
    Input function which provides a single batch for train or eval.
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 4

Non-data size: 58

Instances


Project Name: tensorflow/tpu
Commit Name: abc07f4efd816ba4e82221e69bee752f5c876148
Time: 2020-01-16
Author: yanhuasun@google.com
File Name: models/experimental/densenet_keras/densenet_keras_imagenet.py
Class Name: ImageNetInput
Method Name: dataset_parser


Project Name: tensorflow/tpu
Commit Name: bbe1c373397c65b097987eeaf5fea8b1321d958e
Time: 2020-02-24
Author: yanhuasun@google.com
File Name: models/official/densenet/densenet_imagenet.py
Class Name: ImageNetInput
Method Name: dataset_parser


Project Name: tensorflow/tpu
Commit Name: bbe1c373397c65b097987eeaf5fea8b1321d958e
Time: 2020-02-24
Author: yanhuasun@google.com
File Name: models/official/amoeba_net/amoeba_net_model.py
Class Name: InputPipeline
Method Name: _dataset_parser


Project Name: tensorflow/tpu
Commit Name: 29b638b6daa1836cb37db4a24e3bb379f525e883
Time: 2019-09-23
Author: rsopher@google.com
File Name: models/experimental/resnet50_keras/imagenet_input.py
Class Name: ImageNetInput
Method Name: dataset_parser