ab9c4f8474ca744c7e67822fa21d408d0b0ae2d0,kornia/augmentation/functional.py,,apply_affine,#Any#Any#Any#,412
Before Change
x_data: torch.Tensor = input.view(-1, *input.shape[-3:])
height, width = x_data.shape[-2:]
transform: torch.Tensor = params["transform"].to(device, dtype)
out_data: torch.Tensor = warp_affine(x_data, transform[:, :2, :], (height, width))
if return_transform:
return out_data.view_as(input), transform
After Change
input = _transform_input(input)
_validate_input_dtype(input, accepted_dtypes=[torch.float16, torch.float32, torch.float64])
// arrange input data
x_data: torch.Tensor = input.view(-1, *input.shape[-3:])
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 7
Instances
Project Name: arraiy/torchgeometry
Commit Name: ab9c4f8474ca744c7e67822fa21d408d0b0ae2d0
Time: 2020-04-18
Author: sj8716643@126.com
File Name: kornia/augmentation/functional.py
Class Name:
Method Name: apply_affine
Project Name: arraiy/torchgeometry
Commit Name: ab9c4f8474ca744c7e67822fa21d408d0b0ae2d0
Time: 2020-04-18
Author: sj8716643@126.com
File Name: kornia/augmentation/functional.py
Class Name:
Method Name: apply_vflip
Project Name: arraiy/torchgeometry
Commit Name: ab9c4f8474ca744c7e67822fa21d408d0b0ae2d0
Time: 2020-04-18
Author: sj8716643@126.com
File Name: kornia/augmentation/functional.py
Class Name:
Method Name: apply_hflip