f93beff338925cc1bf1b3ff1b32a2c440a4c9427,tests/_tests_scripts/z_mvp_mnist_gan.py,CustomRunner,_handle_batch,#CustomRunner#Any#,18

Before Change


        Docs.
        
        images, _ = batch
        images = images.view(images.size(0), -1)
        bs = images.shape[0]
        z = torch.randn(bs, 128).to(self.device)
        generated_images = self.model["generator"](z)

        // generator step
        // predictions & labels
        generated_labels = torch.ones(bs, 1).to(self.device)
        generated_pred = self.model["discriminator"](generated_images)

        // loss
        loss_generator = F.binary_cross_entropy(
            generated_pred, generated_labels
        )
        self.state.batch_metrics["loss_generator"] = loss_generator

        // discriminator step
        // real
        images_labels = torch.ones(bs, 1).to(self.device)
        images_pred = self.model["discriminator"](images)
        real_loss = F.binary_cross_entropy(images_pred, images_labels)

        // fake
        generated_labels_ = torch.zeros(bs, 1).to(self.device)
        generated_pred_ = self.model["discriminator"](
            generated_images.detach()
        )
        fake_loss = F.binary_cross_entropy(generated_pred_, generated_labels_)

        // loss
        loss_discriminator = (real_loss + fake_loss) / 2.0
        self.state.batch_metrics["loss_discriminator"] = loss_discriminator


def main():

After Change


class CustomRunner(dl.Runner):
    def _handle_batch(self, batch):
        real_images, _ = batch
        batch_metrics = {}

        // Sample random points in the latent space
        batch_size = real_images.shape[0]
        random_latent_vectors = torch.randn(batch_size, latent_dim).to(
            self.device
        )

        // Decode them to fake images
        generated_images = self.model["generator"](
            random_latent_vectors
        ).detach()
        // Combine them with real images
        combined_images = torch.cat([generated_images, real_images])

        // Assemble labels discriminating real from fake images
        labels = torch.cat(
            [torch.ones((batch_size, 1)), torch.zeros((batch_size, 1))]
        ).to(self.device)
        // Add random noise to the labels - important trick!
        labels += 0.05 * torch.rand(labels.shape).to(self.device)

        // Train the discriminator
        predictions = self.model["discriminator"](combined_images)
        batch_metrics[
            "loss_discriminator"
        ] = F.binary_cross_entropy_with_logits(predictions, labels)

        // Sample random points in the latent space
        random_latent_vectors = torch.randn(batch_size, latent_dim).to(
            self.device
        )
        // Assemble labels that say "all real images"
        misleading_labels = torch.zeros((batch_size, 1)).to(self.device)

        // Train the generator
        generated_images = self.model["generator"](random_latent_vectors)
        predictions = self.model["discriminator"](generated_images)
        batch_metrics["loss_generator"] = F.binary_cross_entropy_with_logits(
            predictions, misleading_labels
        )
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 6

Instances


Project Name: catalyst-team/catalyst
Commit Name: f93beff338925cc1bf1b3ff1b32a2c440a4c9427
Time: 2020-04-21
Author: scitator@gmail.com
File Name: tests/_tests_scripts/z_mvp_mnist_gan.py
Class Name: CustomRunner
Method Name: _handle_batch


Project Name: rusty1s/pytorch_geometric
Commit Name: 6b8b2026f4501c3d6b62031c79ee38dd64955e1f
Time: 2019-04-02
Author: kuynzereb@gmail.com
File Name: torch_geometric/nn/conv/message_passing.py
Class Name: MessagePassing
Method Name: propagate