387e650e16a5405691fb18ce05b34bd90239180e,deepchem/metalearning/maml.py,MAML,fit,#MAML#Any#Any#Any#Any#,202
Before Change
// Do checkpointing.
if i == steps - 1 or time.time() >= checkpoint_time + checkpoint_interval:
with self._session.as_default():
manager.save()
checkpoint_time = time.time()
def restore(self):
Reload the model parameters from the most recent checkpoint file.
After Change
if j == 0:
summed_gradients = meta_gradients
else:
summed_gradients = [
s + g for s, g in zip(summed_gradients, meta_gradients)
]
self._tf_optimizer.apply_gradients(zip(summed_gradients, variables))
// Do checkpointing.
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 7
Instances Project Name: deepchem/deepchem
Commit Name: 387e650e16a5405691fb18ce05b34bd90239180e
Time: 2020-01-31
Author: peastman@stanford.edu
File Name: deepchem/metalearning/maml.py
Class Name: MAML
Method Name: fit
Project Name: onnx/onnx-tensorflow
Commit Name: 054095d922edda5134e520522bc82a1b95cc5bd4
Time: 2020-09-09
Author: smonov@gmail.com
File Name: onnx_tf/backend_rep.py
Class Name: TensorflowRep
Method Name: run
Project Name: onnx/onnx-tensorflow
Commit Name: 054095d922edda5134e520522bc82a1b95cc5bd4
Time: 2020-09-09
Author: smonov@gmail.com
File Name: onnx_tf/backend.py
Class Name: TensorflowBackend
Method Name: run_node