204b4cad88ff526006e2fa2c6604c35902cf5aef,tensorflow_transform/analyzers.py,_QuantilesCombinerSpec,extract_output,#_QuantilesCombinerSpec#Any#,774
Before Change
// All relevant state about the input is captured by "summary"
// (see comment in add_input() and merge_accumulators()).
with self._session.graph.as_default():
self._session.run(
self._qaccumulator.add_prebuilt_summary(
stamp_token=self._stamp_token, summary=tf.constant(summary)))
self._session.run(
self._qaccumulator.flush(
stamp_token=self._stamp_token,
next_stamp_token=self._stamp_token))
are_ready_flush, buckets = (
self._qaccumulator.get_buckets(stamp_token=self._stamp_token))
buckets, _ = self._session.run([buckets, are_ready_flush])
// Quantile boundaries is a list of the form
// [np.ndarrary(min, <internal-boundaries>, max)]
// The approximate quantile library can return less or more than requested
// number of buckets. The max value can be same as the last internal
// boundary, due to removal of duplicates.
// Below, the min and/or max quantile boundaries are trimmed depending
// on the actual boundaries returned by the library.
if buckets.size >= (self._num_quantiles + 1):
// Trim min/max.
buckets = buckets[1:-1]
elif buckets.size == self._num_quantiles:
After Change
// (see comment in add_input() and merge_accumulators()).
self._session.run(
self._add_prebuilt_summary_op,
feed_dict={self._prebuilt_summary_input: summary} )
self._session.run(self._flush_op)
buckets = self._session.run(self._buckets_op)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 6
Instances Project Name: tensorflow/transform
Commit Name: 204b4cad88ff526006e2fa2c6604c35902cf5aef
Time: 2018-05-15
Author: tf-transform-dev@google.com
File Name: tensorflow_transform/analyzers.py
Class Name: _QuantilesCombinerSpec
Method Name: extract_output
Project Name: tensorflow/transform
Commit Name: 204b4cad88ff526006e2fa2c6604c35902cf5aef
Time: 2018-05-15
Author: tf-transform-dev@google.com
File Name: tensorflow_transform/analyzers.py
Class Name: _QuantilesCombinerSpec
Method Name: add_input
Project Name: HazyResearch/fonduer
Commit Name: c12f538d2d496f5e8f932abc1ee72a586b9ea855
Time: 2018-08-14
Author: senwu@cs.stanford.edu
File Name: fonduer/learning/disc_learning.py
Class Name: TFNoiseAwareModel
Method Name: save