314ee5916b0427e3cd27e017265e34d1b22da48f,torch_geometric/nn/functional/spline_gcn/spline_gpu.py,SplineWeightsGPU,forward,#SplineWeightsGPU#Any#,70

Before Change


        _, M_in, M_out = weight.size()
        k_max = self.amount.size(1)

        output = input.new(input.size(0), M_out)
        num_threads = output.numel()

        with torch.cuda.device_of(input):
            f = load_kernel(
                "spline_weights_kernel",
                _spline_weights_kernel,
                Dtype=Dtype(input),
                num_threads=num_threads,
                M_in=M_in,
                M_out=M_out,
                k_max=k_max)
            f(block=(CUDA_NUM_THREADS, 1, 1),
              grid=(GET_BLOCKS(num_threads), 1, 1),
              args=[
                  input.data_ptr(),
                  weight.data_ptr(),
                  output.data_ptr(),
                  self.amount.data_ptr(),
                  self.index.data_ptr()
              ],
              stream=Stream(ptr=torch.cuda.current_stream().cuda_stream))

        return output

After Change


        k_max = self.amount.size(1)
        num_edges, d = values.size()

        amounts = values.new(num_edges, (self.degree+1)**d)
        indices = torch.cuda.IntTensor([num_edges, (self.degree+1)**d])
        num_threads = amounts.numel()

        with torch.cuda.device_of(input):
            f = load_kernel(
                "spline_weights_kernel",
                self._spline_weights_kernel,
                Dtype=Dtype(input),
                num_threads=num_threads,
                num_edges=num_edges,
                k_max=k_max,
                degree=self.degree+1,
                d=len(self.kernel_size.size()),
                k_prod = self.k_prod
            )
            f(block=(CUDA_NUM_THREADS, 1, 1),
              grid=(GET_BLOCKS(num_threads), 1, 1),
              args=[
                  values.data_ptr(),
                  amounts.data_ptr(),
                  indices.data_ptr()
              ],
              stream=Stream(ptr=torch.cuda.current_stream().cuda_stream))

        return amounts, indices
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 7

Instances


Project Name: rusty1s/pytorch_geometric
Commit Name: 314ee5916b0427e3cd27e017265e34d1b22da48f
Time: 2017-10-26
Author: janeric.lenssen@tu-dortmund.de
File Name: torch_geometric/nn/functional/spline_gcn/spline_gpu.py
Class Name: SplineWeightsGPU
Method Name: forward


Project Name: NVIDIA/flownet2-pytorch
Commit Name: dafdc9b5cb8fa4c65285aad22b1429549d06d71a
Time: 2018-02-04
Author: chenkaidev@gmail.com
File Name: networks/resample2d_package/functions/resample2d.py
Class Name: Resample2dFunction
Method Name: backward


Project Name: NVIDIA/flownet2-pytorch
Commit Name: dafdc9b5cb8fa4c65285aad22b1429549d06d71a
Time: 2018-02-04
Author: chenkaidev@gmail.com
File Name: networks/channelnorm_package/functions/channelnorm.py
Class Name: ChannelNormFunction
Method Name: backward