851a5832065cb2988c23023b429137e1f54b5335,neural_style/neural_style.py,,train,#Any#,19
 
Before Change
        transformer.train()
        agg_content_loss = 0.
        agg_style_loss = 0.
        agg_tv_loss = 0.
        count = 0
        for batch_id, (x, _) in enumerate(train_loader):
            n_batch = len(x)
            count += n_batch
            optimizer.zero_grad()
            x = Variable(utils.preprocess_batch(x))
            if args.cuda:
                x = x.cuda()
            // pass images through the TransformerNet
            y = transformer(x)
            features_y = vgg(y)
            xc = Variable(x.data.clone(), volatile=True)
            features_xc = vgg(xc)
            f_xc_c = Variable(features_xc[1].data, requires_grad=False)
            content_loss = args.content_weight * mse_loss(features_y[1], f_xc_c)
            style_loss = 0.
            for m in range(len(features_y)):
                gram_s = Variable(gram_style[m].data, requires_grad=False)
                gram_y = utils.gram_matrix(features_y[m])
                style_loss += args.style_weight * mse_loss(gram_y, gram_s[:n_batch,:,:])
            tv_loss = args.tv_weight * ((torch.sum(torch.abs(y[:,:,1:,:] - y[:,:,:-1,:])) + torch.sum(torch.abs(y[:,:,:,1:] - y[:,:,:,:-1]))) / float(n_batch))
            total_loss = content_loss + style_loss + tv_loss
            total_loss.backward()
            optimizer.step()
            agg_content_loss += content_loss.data[0]
            agg_style_loss += style_loss.data[0]
            agg_tv_loss += tv_loss.data[0]
            if (batch_id + 1) % args.log_interval == 0:
                mesg = "Epoch {}:\t[{}/{}]\tcontent:{:.2f}\tstyle:{:.2f}\ttv:{:.2f}".format(
                    e + 1, count, len(train_dataset),
After Change
        kwargs = {}
    print("=====================")
    print("CURRENT TIME:", time.ctime())
    print("PYTHON VERSION:", sys.version)
    print("PYTORCH VERSION:", torch.__version__)
    print("BATCH SIZE:", args.batch_size)
    print("EPOCHS:", args.epochs)

In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 7
Instances
 Project Name: abhiskk/fast-neural-style
 Commit Name: 851a5832065cb2988c23023b429137e1f54b5335
 Time: 2017-04-03
 Author: abhishekkadiyan@gmail.com
 File Name: neural_style/neural_style.py
 Class Name: 
 Method Name: train
 Project Name: dPys/PyNets
 Commit Name: 5605cfb777a9319319490c3357be491ddae88213
 Time: 2018-06-13
 Author: dpisner@utexas.edu
 File Name: pynets/thresholding.py
 Class Name: 
 Method Name: thresh_diff
 Project Name: dPys/PyNets
 Commit Name: 5605cfb777a9319319490c3357be491ddae88213
 Time: 2018-06-13
 Author: dpisner@utexas.edu
 File Name: pynets/thresholding.py
 Class Name: 
 Method Name: thresh_and_fit