def forward(self, g):
if self.features is not None:
g.ndata["id"] = self.features
for layer in self.layers:
layer(g)
return g.ndata.pop("h")
class EntityClassify(BaseRGCN):
After Change
self.conv2 = RGCNConv(g, 16, out_channels, num_relations, num_bases=30)
def forward(self, x):
x = F.relu(self.conv1(None))x = self.conv2(x)
return F.log_softmax(x, dim=1)
class RGCNSPMVConv(torch.nn.Module):