7fa458e2c4c5df5a9d2cc4e66b2472cd9f3377a8,python/baseline/model.py,Tagger,predict_text,#Tagger#Any#,207
Before Change
//lengths = zero_alloc(1, dtype=int)
//lengths[0] = min(len(tokens), mxlen)
data = featurizer.run(tokens)
lengths = data["lengths"]
indices = self.predict(data)[0]
output = []
for j in range(lengths[0]):
After Change
mxlen = kwargs.get("mxlen", self.mxlen if hasattr(self, "mxlen") else len(tokens))
maxw = kwargs.get("maxw", self.maxw if hasattr(self, "maxw") else max([len(token) for token in tokens]))
word_tokenizer = Dict1DVectorizer(mxlen=mxlen, fields="text")
char_tokenizer = Dict2DVectorizer(mxlen=mxlen, mxwlen=maxw, fields="text")
vectorizers = {"word": word_tokenizer, "char": char_tokenizer}
// This might be inefficient if the label space is large
label_vocab = revlut(self.get_labels())
batch_dict = dict()
for k, vectorizer in vectorizers.items():
value, length = vectorizer.run(tokens, self.embeddings[k].vocab)
batch_dict[k] = value
if length is not None:
batch_dict["{}_lengths".format(k)] = length
indices = self.predict(batch_dict)[0]
output = []
for j in len(tokens):
output.append((tokens[j], label_vocab[indices[j].item()]))
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 7
Instances
Project Name: dpressel/mead-baseline
Commit Name: 7fa458e2c4c5df5a9d2cc4e66b2472cd9f3377a8
Time: 2018-09-17
Author: dpressel@gmail.com
File Name: python/baseline/model.py
Class Name: Tagger
Method Name: predict_text
Project Name: deepfakes/faceswap
Commit Name: acc6553f80d17469bedfdcdab2ea676478a49d9d
Time: 2019-07-04
Author: 36920800+torzdf@users.noreply.github.com
File Name: tools/effmpeg.py
Class Name: Effmpeg
Method Name: get_info
Project Name: uber/ludwig
Commit Name: 360f6e8aee7989b7e649c21883026612964b9cf7
Time: 2020-03-06
Author: jimthompson5802@aol.com
File Name: ludwig/models/model.py
Class Name: Model
Method Name: batch_evaluation