20d1da406aaa2ae2a32c48a28e3efe4f475d7398,ch12/train_crossent.py,,,#,18
Before Change
// initialize embedding lookup table
embeddings = nn.Embedding(num_embeddings=emb.shape[0], embedding_dim=emb.shape[1])
embeddings.weight.data.copy_(torch.from_numpy(emb))
embeddings.weight.requires_grad = False
if args.cuda:
embeddings.cuda()
net = model.PhraseModel(emb_size=emb.shape[1], dict_size=emb.shape[0], hid_size=model.HIDDEN_STATE_SIZE)
if args.cuda:
net.cuda()
log.info("Model: %s", net)
After Change
// if args.cuda:
// embeddings.cuda()
net = model.PhraseModel(emb_size=model.EMBEDDING_DIM, dict_size=len(emb_dict), hid_size=model.HIDDEN_STATE_SIZE)
if args.cuda:
net.cuda()
log.info("Model: %s", net)
writer = SummaryWriter(comment="-" + args.name)
optimiser = optim.Adam(net.parameters(), lr=LEARNING_RATE)
best_bleu = None
for epoch in range(MAX_EPOCHES):
random.shuffle(train_data)
losses = []
bleu_sum = 0.0
bleu_count = 0
for batch in data.iterate_batches(train_data, BATCH_SIZE):
optimiser.zero_grad()
input_seq, out_seq_list, _, out_idx = model.pack_batch(batch, net.emb, cuda=args.cuda)
enc = net.encode(input_seq)
net_results = []
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 6
Instances
Project Name: PacktPublishing/Deep-Reinforcement-Learning-Hands-On
Commit Name: 20d1da406aaa2ae2a32c48a28e3efe4f475d7398
Time: 2018-01-06
Author: max.lapan@gmail.com
File Name: ch12/train_crossent.py
Class Name:
Method Name:
Project Name: PacktPublishing/Deep-Reinforcement-Learning-Hands-On
Commit Name: 8d36775e23b0cea21b7996ec4c0c21915a8afed7
Time: 2018-01-06
Author: max.lapan@gmail.com
File Name: ch12/train_scst.py
Class Name:
Method Name:
Project Name: kevinzakka/recurrent-visual-attention
Commit Name: 520e8fb57b890a7249334d9e90c9ad209d0b849f
Time: 2018-02-10
Author: kevinarmandzakka@gmail.com
File Name: modules.py
Class Name: retina
Method Name: foveate