a997c9720844894b9119be2d6ea8dd6fa057c143,samples/dqn_expreplay.py,,,#,16
Before Change
q_vals = q_vals.cuda()
l = loss_fn(model(states), q_vals)
losses.append(l.data[0])
mean_q.append(q_vals.mean().data[0])
l.backward()
optimizer.step()
After Change
q_vals.append(train_q)
return torch.from_numpy(np.array(states, dtype=np.float32)), torch.stack(q_vals)
reward_sma = utils.SMAQueue(run.getint("stop", "mean_games", fallback=100))
for idx in range(10000):
exp_replay.populate(run.getint("exp_buffer", "populate"))
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances
Project Name: Shmuma/ptan
Commit Name: a997c9720844894b9119be2d6ea8dd6fa057c143
Time: 2017-05-03
Author: maxl@fornova.net
File Name: samples/dqn_expreplay.py
Class Name:
Method Name:
Project Name: PyMVPA/PyMVPA
Commit Name: 378f02bf9cd59fa2609ce3339be5885599ae1fac
Time: 2008-06-23
Author: michael.hanke@gmail.com
File Name: mvpa/base/__init__.py
Class Name:
Method Name:
Project Name: Shmuma/ptan
Commit Name: 584d38348bfe5246ff0d128bb23f1355560788db
Time: 2017-05-21
Author: max.lapan@gmail.com
File Name: samples/dqn_tweaks_atari.py
Class Name:
Method Name: