00135a70697dc9b4611971e5833e2d84501c3da7,keras/engine/training.py,Model,train_step,#Model#Any#,747
Before Change
y, y_pred, sample_weight, regularization_losses=self.losses)
self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
self.compiled_metrics.update_state(y, y_pred, sample_weight)
return {m.name: m.result() for m in self.metrics}
def make_train_function(self):
Creates a function that executes one step of training.
After Change
self.compiled_metrics.update_state(y, y_pred, sample_weight)
// Collect metrics to return
return_metrics = {}
for metric in self.metrics:
result = metric.result()
if isinstance(result, dict):
return_metrics.update(result)
else:
return_metrics[metric.name] = result
return return_metrics
def make_train_function(self):
Creates a function that executes one step of training.
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 6
Instances Project Name: keras-team/keras
Commit Name: 00135a70697dc9b4611971e5833e2d84501c3da7
Time: 2021-03-23
Author: scottzhu@google.com
File Name: keras/engine/training.py
Class Name: Model
Method Name: train_step
Project Name: studioml/studio
Commit Name: 13986978d4545aa429a7fc233d8e39718d52e255
Time: 2020-08-11
Author: andrei.denissov@cognizant.com
File Name: studio/keyvalue_provider.py
Class Name: KeyValueProvider
Method Name: checkpoint_experiment
Project Name: keras-team/keras
Commit Name: 00135a70697dc9b4611971e5833e2d84501c3da7
Time: 2021-03-23
Author: scottzhu@google.com
File Name: keras/engine/training.py
Class Name: Model
Method Name: test_step