x10 = self.conv10(x9)
f = F.avg_pool2d(x10, x10.size()[2:]).view(x10.size(0), -1)
if not self.training:
return f
y = self.classifier(f)
if self.loss == {"xent"}:
return y
elif self.loss == {"xent", "htri"}:
After Change
x9 = self.fire9(x8)
if self.bypass:
x9 = x9 + x8
x9 = F.dropout(x9, training=self.training)
x10 = F.relu(self.conv10(x9))
f = F.avg_pool2d(x10, x10.size()[2:]).view(x10.size(0), -1)
if self.loss == {"xent"}: