548ac5868bd37d4cbfd69771cb95f3eefa80f934,autosklearn/smbo.py,AutoMLSMBO,run_smbo,#AutoMLSMBO#Any#,568
 Before Change 
                num_run += 1
                self.logger.info("Finished SUBSET training sucessfully "
                                 "with ratio %f", ratio)
                break 
        // == METALEARNING suggestions
        // we start by evaluating the defaults on the full dataset again
        // and add the suggestions from metalearning behind itAfter Change 
                                 "info: %s ", num_run, duration, result,
                                 str(status), additional_run_info)
                if i < 2:
                    if status != StatusType.SUCCESS:
                        self.logger.info("A CONFIG did not finish "
                                         " for subset ratio %f -> going smaller",
                                         ratio)
                        continue
                    else:
                        num_run += 1
                        self.logger.info("Finished SUBSET training sucessfully "
                                         "with ratio %f", ratio)
                        break
                else:
                    if status != StatusType.SUCCESS:
                        self.logger.info("A CONFIG did not finish "
                                         " for subset ratio %f.",
                                         ratio)
                        num_run += 1
                        continue
                    else:
                        num_run += 1
                        self.logger.info("Finished SUBSET training sucessfully "
                                         "with ratio %f", ratio)
                        break
        // == METALEARNING suggestions
        // we start by evaluating the defaults on the full dataset again
        // and add the suggestions from metalearning behind it
         metalearning_configurations = default_cfgs \
                                      + self.collect_metalearning_suggestions_with_limits()
        // == first, evaluate all metelearning and default configurationsIn pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances  Project Name: automl/auto-sklearn
 Commit Name: 548ac5868bd37d4cbfd69771cb95f3eefa80f934
 Time: 2016-02-13
 Author: feurerm@informatik.uni-freiburg.de
 File Name: autosklearn/smbo.py
 Class Name: AutoMLSMBO
 Method Name: run_smbo
 Project Name: tensorflow/mesh
 Commit Name: 781873c42413d3728e15357eed9de03acc27c66a
 Time: 2019-03-08
 Author: noam@google.com
 File Name: examples/transformer_standalone.py
 Class Name: 
 Method Name: decode_from_file
 Project Name: NifTK/NiftyNet
 Commit Name: c54d542084a00f2dfceb5fb792bc167d3282726e
 Time: 2018-04-23
 Author: wenqi.li@ucl.ac.uk
 File Name: niftynet/engine/application_driver.py
 Class Name: ApplicationDriver
 Method Name: _loop