d1ac7b831ad36cd0e4bdd7980819f83208345148,gpflow/expectations.py,,_expectation,#Any#Any#Any#Any#Any#,560

Before Change


@dispatch(DiagonalGaussian, kernels.Product, InducingPoints, kernels.Product, InducingPoints)
@quadrature_fallback
def _expectation(p, kern1, feat1, kern2, feat2):
    if feat1 != feat2:
        raise NotImplementedError("Different features are not supported")

    if kern1 != kern2:
        raise NotImplementedError("Calculating the expectation over two different Product kernels is not supported")

    kern = kern1
    feat = feat1

    if not kern.on_separate_dimensions:
        raise NotImplementedError("Product currently needs to be defined on separate dimensions.")  // pragma: no cover
    with tf.control_dependencies([
        tf.assert_equal(tf.rank(p.var), 2,
                        message="Product currently only supports diagonal Xcov.", name="assert_Xcov_diag"),

After Change



    :return: NxDxQ
    
    with params_as_tensors_for(mean1), params_as_tensors_for(mean2):
        N = tf.shape(p.mu)[0]
        e_xxt = p.cov + (p.mu[:, :, None] * p.mu[:, None, :])  // NxDxD
        e_xxt_A = tf.matmul(e_xxt, tf.tile(mean2.A[None, ...], (N, 1, 1)))  // NxDxQ
        e_x_bt = p.mu[:, :, None] * mean2.b[None, None, :]  // NxDxQ

        return e_xxt_A + e_x_bt
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 5

Instances


Project Name: GPflow/GPflow
Commit Name: d1ac7b831ad36cd0e4bdd7980819f83208345148
Time: 2018-02-07
Author: alex.ialongo@gmail.com
File Name: gpflow/expectations.py
Class Name:
Method Name: _expectation


Project Name: AIRLab-POLIMI/mushroom
Commit Name: f43e34a990ef0f9bfa6ac055c79a2f62c6b6b322
Time: 2020-04-22
Author: boris.ilpossente@hotmail.it
File Name: mushroom_rl/core/serialization.py
Class Name: Serializable
Method Name: load


Project Name: mortendahl/tf-encrypted
Commit Name: 0be81ada984e231be55e60466da93ba551bcf3a1
Time: 2020-07-28
Author: zhicong303@gmail.com
File Name: tf_encrypted/protocol/aby3/aby3.py
Class Name: ABY3
Method Name: setup_pairwise_randomness