mutate = partial(nd_mutation, mut1d=mutuniform(pset=pset))
mate = partial(nd_crossover, cx1d=cxonepoint())
algorithm = AgeFitness(mate, mutate, selNSGA2, MyNDTree.create_population)
pop = update_fitness(MyNDTree.create_population(pop_size))
for gen in range(20):
pop = algorithm.evolve(pop)
pop = update_fitness(pop)
best = selBest(pop, 1)[0]
print(best, best.fitness.values)
if __name__ == "__main__":