f967bd87424bbc50f475d5959994a5743ae2af0e,src/pudl/convert/epacems_to_parquet.py,,epacems_to_parquet,#Any#Any#Any#Any#Any#Any#Any#,168

Before Change


    out_dir = pudl.load.metadata.prep_directory(out_dir, clobber=clobber)
    in_types = create_in_dtypes()
    schema = create_cems_schema()
    data_path = pathlib.Path(datapkg_dir, "data")
    // double check that all of the years you are asking for are actually in
    _verify_cems_args(data_path, epacems_years, epacems_states)
    for file in data_path.iterdir():
        if "epacems" in file.name:
            df_name = file.name[:file.name.find(".")]
            year = int(df_name[25:29])
            state = df_name[30:].upper()
            // only convert the years and states that you actually want
            if year in epacems_years and state in epacems_states:
                df = pd.read_csv(
                    file, dtype=in_types, parse_dates=["operating_datetime_utc"]
                ).assign(year=year)
                logger.info(
                    f"Converted {len(df)} records for {year} and {state}."
                )
                pq.write_to_dataset(
                    pa.Table.from_pandas(
                        df, preserve_index=False, schema=schema),
                    root_path=str(out_dir), partition_cols=list(partition_cols),
                    compression=compression)


def parse_command_line(argv):
    
    Parse command line arguments. See the -h option.

After Change


    // paths pertaining to the CEMS years/states of interest.
    in_types = create_in_dtypes()
    schema = create_cems_schema()
    for year in epacems_years:
        for state in epacems_states:
            newpath = pathlib.Path(
                data_dir,
                f"hourly_emissions_epacems_{year}_{state.lower()}.csv.gz")
            df = (
                pd.read_csv(newpath, dtype=in_types,
                            parse_dates=["operating_datetime_utc"])
                .assign(year=year)
            )
            logger.info(f"{year}-{state}: {len(df)} records")
            pq.write_to_dataset(
                pa.Table.from_pandas(
                    df, preserve_index=False, schema=schema),
                root_path=str(out_dir), partition_cols=list(partition_cols),
                compression=compression)


def parse_command_line(argv):
    
    Parse command line arguments. See the -h option.
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 6

Instances


Project Name: catalyst-cooperative/pudl
Commit Name: f967bd87424bbc50f475d5959994a5743ae2af0e
Time: 2019-12-28
Author: zane.selvans@catalyst.coop
File Name: src/pudl/convert/epacems_to_parquet.py
Class Name:
Method Name: epacems_to_parquet


Project Name: home-assistant/home-assistant
Commit Name: db23320659a711637b5164fbe6ae6db15cc48e48
Time: 2016-07-06
Author: dale3h@gmail.com
File Name: homeassistant/components/sensor/apcupsd.py
Class Name:
Method Name: setup_platform


Project Name: stanfordnlp/stanza
Commit Name: f25d9afd2572b98c56c3f597ad8da2648cd7b663
Time: 2020-12-01
Author: horatio@gmail.com
File Name: stanza/utils/training/common.py
Class Name:
Method Name: main