70e4d7fe60a9658bb27b9f5fb67592a1222b2ec3,spotlight/sequence/representations.py,CNNNet,user_representation,#CNNNet#Any#,114
Before Change
x = cnn_layer(x)
user_representations = x.view(batch_size, dim, -1)
pooled_representations = (user_representations
.max(-1)[0]
.view(batch_size, dim))
return pooled_representations
def forward(self, user_representations, targets):
After Change
x = F.pad(x, (0, 0, self.kernel_width - min(i, 1), 0))
x = F.relu(cnn_layer(x))
x = x.squeeze(3)
return x[:, :, :-1], x[:, :, -1]
def forward(self, user_representations, targets):
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances
Project Name: maciejkula/spotlight
Commit Name: 70e4d7fe60a9658bb27b9f5fb67592a1222b2ec3
Time: 2017-07-06
Author: maciej.kula@gmail.com
File Name: spotlight/sequence/representations.py
Class Name: CNNNet
Method Name: user_representation
Project Name: ixaxaar/pytorch-dnc
Commit Name: 51caa2e2cebe2e6e8c06ffbb918448dd2db011a7
Time: 2017-11-10
Author: root@ixaxaar.in
File Name: dnc/dnc.py
Class Name: DNC
Method Name: _layer_forward
Project Name: ixaxaar/pytorch-dnc
Commit Name: aa9592d811ad9765e06dd0e638e7cee9e5f4b00c
Time: 2017-11-10
Author: root@ixaxaar.in
File Name: dnc/dnc.py
Class Name: DNC
Method Name: _layer_forward