d6acc5e620a5c566b3421b1c8bf2a66a064ca5bd,scanpy/preprocessing/simple.py,,normalize_per_cell_weinreb16_deprecated,#Any#Any#Any#,779

Before Change


    if max_fraction < 0 or max_fraction > 1:
        raise ValueError("Choose max_fraction between 0 and 1.")
    counts_per_cell = np.sum(X, axis=1)
    if max_fraction == 1:
        X_norm = X / counts_per_cell[:, np.newaxis]
        return X_norm
    // restrict computation of counts to genes that make up less than
    // constrain_theshold of the total reads
    tc_tiled = np.tile(counts_per_cell[:, np.newaxis], (1, X.shape[1]))
    included = np.all(X <= tc_tiled * max_fraction, axis=0)
    tc_include = np.sum(X[:, included], axis=1)
    tc_tiled = np.tile(tc_include[:, np.newaxis], (1, X.shape[1])) + 1e-6
    X_norm = X / tc_tiled
    if mult_with_mean:
        X_norm *= np.mean(counts_per_cell)
    return X_norm

After Change


    if max_fraction < 0 or max_fraction > 1:
        raise ValueError("Choose max_fraction between 0 and 1.")
        
    counts_per_cell = X.sum(1).A1 if issparse(X) else X.sum(1)
    gene_subset = np.all(X <= counts_per_cell[:, None] * max_fraction, axis=0)
    if issparse(X): gene_subset = gene_subset.A1
    tc_include = X[:, included].sum(1).A1 if issparse(X) else X[:, included].sum(1)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 5

Instances


Project Name: theislab/scanpy
Commit Name: d6acc5e620a5c566b3421b1c8bf2a66a064ca5bd
Time: 2018-10-25
Author: 31883718+VolkerBergen@users.noreply.github.com
File Name: scanpy/preprocessing/simple.py
Class Name:
Method Name: normalize_per_cell_weinreb16_deprecated


Project Name: glm-tools/pyglmnet
Commit Name: 8442ee853b9cb7813689d9dfb381af0976bc5825
Time: 2017-03-28
Author: pavan.ramkumar@gmail.com
File Name: pyglmnet/pyglmnet.py
Class Name: GLM
Method Name: score


Project Name: neurodsp-tools/neurodsp
Commit Name: 1586d3e6de28778f2152fa780b4c59a01878f7ff
Time: 2021-02-05
Author: ryan.hammonds@utexas.edu
File Name: neurodsp/plts/time_series.py
Class Name:
Method Name: plot_time_series