cbd5186bab98af9ea16d5fd7624978c92276b04c,metric_learn/mlkr.py,MLKR,_process_inputs,#MLKR#Any#Any#,34
Before Change
if X.ndim == 1:
X = X[:, np.newaxis]
if y.ndim == 1:
y = y[:, np .newaxis]
n, d = X.shape
if y.shape[0] != n:
raise ValueError("Data and label lengths mismatch: %d != %d"
After Change
m = self.params["num_dims"]
if m is None:
m = d
if A is None:
// initialize to PCA transformation matrix
// note: not the same as n_components=m !
A = PCA().fit(X).components_.T[:m]
elif A.shape != (m, d):
raise ValueError("A0 needs shape (%d,%d) but got %s" % (
m, d, A.shape))
return y, A
def fit(self, X, y):
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 6
Instances Project Name: metric-learn/metric-learn
Commit Name: cbd5186bab98af9ea16d5fd7624978c92276b04c
Time: 2016-10-28
Author: perimosocordiae@gmail.com
File Name: metric_learn/mlkr.py
Class Name: MLKR
Method Name: _process_inputs
Project Name: metric-learn/metric-learn
Commit Name: 3e38fe09a87e6ef05289f3cbe6ffa03e2dc716e8
Time: 2017-03-02
Author: perimosocordiae@gmail.com
File Name: metric_learn/rca.py
Class Name: RCA
Method Name: _process_data
Project Name: metric-learn/metric-learn
Commit Name: 23d07466961fa7a72aa8692bc42d6d569b80c5c9
Time: 2019-01-02
Author: 31916524+wdevazelhes@users.noreply.github.com
File Name: metric_learn/rca.py
Class Name: RCA
Method Name: fit