b44364811b14bde01d84554624a9bffa0e4976e3,examples/cora_gcn.py,,,#,41
Before Change
model = Net()
if torch.cuda.is_available():
train_mask, val_mask = train_mask.cuda(), val_mask.cuda()
test_mask, model = test_mask.cuda(), model.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=0.005)
def train():
After Change
return pred.eq(data.target.data[mask]).sum() / mask.size(0)
acc = []
for run in range(1, 101):
model.conv1.reset_parameters()
model.conv2.reset_parameters()
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 6
Instances Project Name: rusty1s/pytorch_geometric
Commit Name: b44364811b14bde01d84554624a9bffa0e4976e3
Time: 2018-03-07
Author: matthias.fey@tu-dortmund.de
File Name: examples/cora_gcn.py
Class Name:
Method Name:
Project Name: kymatio/kymatio
Commit Name: 1db4255e8b19a322434fa2fce398b73b5757f764
Time: 2018-11-21
Author: janden@flatironinstitute.org
File Name: examples/1d/compute_speed.py
Class Name:
Method Name:
Project Name: kentsommer/pytorch-value-iteration-networks
Commit Name: 2205fce8ac9f1d9f01f81996f7deef9a7b197a8d
Time: 2020-10-01
Author: 16188477+shuishida@users.noreply.github.com
File Name: test.py
Class Name:
Method Name: main