5a126fc7cac272dfe2514554ef228001c795d729,slm_lab/agent/algorithm/sac.py,SoftActorCritic,act,#SoftActorCritic#Any#,85

Before Change


        if self.body.env.clock.frame < self.training_start_step:
            return policy_util.random(state, self, self.body).cpu().squeeze().numpy()
        else:
            action = super().act(state)
            return np.tanh(action)  // continuous action bound

    def calc_q(self, state, action, net=None):
        """Forward-pass to calculate the predicted state-action-value from q1_net."""

After Change


            return policy_util.random(state, self, self.body).cpu().squeeze().numpy()
        else:
            action = self.action_policy(state, self, self.body)
            if self.body.is_discrete:
                // discrete output is RelaxedOneHotCategorical, need to sample to int. clamp to prevent minor precision issue with prob < 0
                action = torch.distributions.Categorical(probs=action.clamp(min=0)).sample()
            else:
                action = torch.tanh(action)  // continuous action bound
            return action.cpu().squeeze().numpy()

    def calc_q(self, state, action, net=None):
        """Forward-pass to calculate the predicted state-action-value from q1_net."""
        x = torch.cat((state, action), dim=-1)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 7

Instances


Project Name: kengz/SLM-Lab
Commit Name: 5a126fc7cac272dfe2514554ef228001c795d729
Time: 2019-08-03
Author: kengzwl@gmail.com
File Name: slm_lab/agent/algorithm/sac.py
Class Name: SoftActorCritic
Method Name: act


Project Name: eriklindernoren/PyTorch-YOLOv3
Commit Name: 8af5800b9a74cf7b2c8d2577b7d9be3ef987f26b
Time: 2021-04-09
Author: florian@flova.de
File Name: detect.py
Class Name:
Method Name: detect_image


Project Name: interactiveaudiolab/nussl
Commit Name: 2ffbfa3a6bd3b8de8e21a762489346054dcd9ccc
Time: 2020-03-12
Author: prem@u.northwestern.edu
File Name: nussl/separation/deep/deep_mask_estimation.py
Class Name: DeepMaskEstimation
Method Name: extract_features