c93334700c4c894cf9faedc1aea46ffe5dccb73a,shared/gan.py,,discriminator_wide_resnet,#Any#Any#,160
Before Change
batch_size = int(x.get_shape()[0])
layers = config["d_wide_resnet_depth"]
result = x
result = build_conv_tower(result, config["conv_d_layers"][:1], config["d_pre_res_filter"], config["batch_size"], config["d_batch_norm"], True, "d_", config["d_activation"], stride=config["d_pre_res_stride"])
result = activation(result)
result = conv2d(result, layers[0], name="d_expand", k_w=3, k_h=3, d_h=1, d_w=1)
After Change
//result = build_conv_tower(result, config["conv_d_layers"][:1], config["d_pre_res_filter"], config["batch_size"], config["d_batch_norm"], True, "d_", config["d_activation"], stride=config["d_pre_res_stride"])
//result = activation(result)
result = conv2d(result, layers[0], name="d_expand1", k_w=3, k_h=3, d_h=2, d_w=2)
result = batch_norm(config["batch_size"], name="d_expand_bn1")(result)
result = activation(result)
result = conv2d(result, layers[0], name="d_expand2", k_w=3, k_h=3, d_h=2, d_w=2)
result = batch_norm(config["batch_size"], name="d_expand_bn2")(result)
result = activation(result)
result = conv2d(result, layers[0], name="d_expand", k_w=3, k_h=3, d_h=1, d_w=1)
result = batch_norm(config["batch_size"], name="d_expand_bn")(result)
result = activation(result)
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances
Project Name: HyperGAN/HyperGAN
Commit Name: c93334700c4c894cf9faedc1aea46ffe5dccb73a
Time: 2016-08-05
Author: martyn@255bits.com
File Name: shared/gan.py
Class Name:
Method Name: discriminator_wide_resnet
Project Name: HyperGAN/HyperGAN
Commit Name: 01cc9670d67e6907935e1ea6da9ae4d3b2f312ee
Time: 2017-11-03
Author: martyn@255bits.com
File Name: hypergan/discriminators/pyramid_discriminator.py
Class Name: PyramidDiscriminator
Method Name: build
Project Name: HyperGAN/HyperGAN
Commit Name: 41f7cac9bdc4e3641d77fff81ce751b68bd6b36b
Time: 2017-05-20
Author: martyn@255bits.com
File Name: hypergan/generators/common.py
Class Name:
Method Name: standard_block