c46a1aaa40d45512468ca7c3c004656ad2f94afb,GPy/core/gp.py,GP,_log_likelihood_gradients,#GP#,102
Before Change
Note, we use the chain rule: dL_dtheta = dL_dK * d_K_dtheta
return np.hstack((self.kern.dK_dtheta(dL_dK=self.dL_dK, X=self.X), self.likelihood._gradients(partial=np.diag(self.dL_dK))))
def _raw_predict(self, _Xnew, which_parts="all", full_cov=False, stop=False):
Internal helper function for making predictions, does not account
After Change
//self.likelihood.fit_full(self.kern.K(self.X))
//self.likelihood._set_params(self.likelihood._get_params())
dK_dthetaK = self.kern.dK_dtheta
dL_dthetaK = self.likelihood._Kgradients(dK_dthetaK, self.X.copy())
dL_dthetaL = self.likelihood._gradients(partial=np.diag(self.dL_dK))
else:
dL_dthetaL = self.likelihood._gradients(partial=np.diag(self.dL_dK))
return np.hstack((dL_dthetaK, dL_dthetaL))
def _raw_predict(self, _Xnew, which_parts="all", full_cov=False, stop=False):
Internal helper function for making predictions, does not account
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 7
Instances
Project Name: SheffieldML/GPy
Commit Name: c46a1aaa40d45512468ca7c3c004656ad2f94afb
Time: 2013-09-09
Author: alan.daniel.saul@gmail.com
File Name: GPy/core/gp.py
Class Name: GP
Method Name: _log_likelihood_gradients
Project Name: nipy/dipy
Commit Name: f698c4dbfc266bae9c1d1ceb0d906863c9b54e2e
Time: 2013-05-14
Author: caruyer@gmail.com
File Name: dipy/core/sphere_stats.py
Class Name:
Method Name: random_uniform_on_sphere
Project Name: scikit-video/scikit-video
Commit Name: fe87e2c499d4312656146c33de8c62177944b801
Time: 2017-01-22
Author: tgoodall@utexas.edu
File Name: skvideo/measure/strred.py
Class Name:
Method Name: strred