b9aac6f4f32d755595c577c5fc5ac0936a914031,doc/examples/restore_dti.py,,,#,55

Before Change




dpd.fetch_stanford_hardi()
img, gtab = dpd.read_stanford_hardi()


We initialize a DTI model class instance using the gradient table used in the

After Change


hardi_fname, hardi_bval, hardi_bvec = dpd.get_fnames("stanford_hardi")
data, affine = load_nifti(hardi_fname)

bvals, bvecs = read_bvals_bvecs(hardi_bval, hardi_bvec)
gtab = gradient_table(bvals, bvecs)


We initialize a DTI model class instance using the gradient table used in the
measurement. By default, ``dti.TensorModel`` will use a weighted least-squares
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 5

Instances


Project Name: nipy/dipy
Commit Name: b9aac6f4f32d755595c577c5fc5ac0936a914031
Time: 2020-01-03
Author: skab12@gmail.com
File Name: doc/examples/restore_dti.py
Class Name:
Method Name:


Project Name: nipy/dipy
Commit Name: 98d1c553481256c1acb5cc4e92908cdf1177aef6
Time: 2014-12-12
Author: arokem@gmail.com
File Name: dipy/reconst/tests/test_sfm.py
Class Name:
Method Name: test_SparseFascicleModel


Project Name: nipy/dipy
Commit Name: 0a98c14001045bac886a684ed1a1998551fb5fe2
Time: 2015-10-12
Author: arokem@gmail.com
File Name: dipy/reconst/tests/test_dti.py
Class Name:
Method Name: test_predict