813e576d5c878e33ed75c594f54d057312e66daf,tensorlayer/layers/convolution/expert_conv.py,Conv2dLayer,build,#Conv2dLayer#Any#,219
Before Change
)
if self.b_init:
self.b = tf.compat.v1.get_variable(
name=self.name + "\b_conv2d", shape=(self.shape[-1]), initializer=self.b_init,
dtype=LayersConfig.tf_dtype, **self.b_init_args
)
self.add_weights([self.W, self.b])
After Change
def build(self, inputs):
self.W = self._get_weights("filters", shape=self.shape, init=self.W_init, init_args=self.W_init_args)
if self.b_init:
self.b = self._get_weights("biases", shape=(self.n_filter), init=self.b_init, init_args=self.b_init_args)
// self.W = tf.compat.v1.get_variable(
// name=self.name + "\W_conv2d", shape=self.shape, initializer=self.W_init, dtype=LayersConfig.tf_dtype,
// **self.W_init_args
// )
// if self.b_init:
// self.b = tf.compat.v1.get_variable(
// name=self.name + "\b_conv2d", shape=(self.shape[-1]), initializer=self.b_init,
// dtype=LayersConfig.tf_dtype, **self.b_init_args
// )
// self.add_weights([self.W, self.b])
// else:
// self.add_weights(self.W)
def forward(self, inputs):
outputs = tf.nn.conv2d(
inputs,
self.W,
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances
Project Name: tensorlayer/tensorlayer
Commit Name: 813e576d5c878e33ed75c594f54d057312e66daf
Time: 2019-01-16
Author: dhsig552@163.com
File Name: tensorlayer/layers/convolution/expert_conv.py
Class Name: Conv2dLayer
Method Name: build
Project Name: tensorlayer/tensorlayer
Commit Name: 4d6cb5a6ea1fc8632a96591582b88d7088fafbf2
Time: 2019-05-11
Author: yingda.yin@gmail.com
File Name: tensorlayer/layers/normalization.py
Class Name: InstanceNorm
Method Name: build
Project Name: tensorlayer/tensorlayer
Commit Name: 813e576d5c878e33ed75c594f54d057312e66daf
Time: 2019-01-16
Author: dhsig552@163.com
File Name: tensorlayer/layers/convolution/expert_conv.py
Class Name: Conv3dLayer
Method Name: build