1082ba352c5f1d524b1fcba43ee611280b169224,fairseq/trainer.py,Trainer,valid_step,#Trainer#Any#,310
 
Before Change
            logging_outputs = [logging_output]
        // aggregate stats and logging outputs
        ntokens = sum(log.get("ntokens", 0) for log in logging_outputs)
        grad_denom = self.criterion.__class__.grad_denom(sample_sizes)
        agg_logging_output = self.criterion.__class__.aggregate_logging_outputs(logging_outputs)
After Change
        self.model.eval()
        logging_output, sample_size = {}, 0
        with torch.no_grad():
            sample = self._prepare_sample(sample)
            if sample is None:
                sample = self._prepare_sample(self._dummy_batch)
            _loss, sample_size, logging_output = self.task.get_loss(
                self.model, self.criterion, sample,
            )
        // gather logging outputs from all replicas
        if self.args.distributed_world_size > 1:
            logging_output, sample_size = zip(*distributed_utils.all_gather_list(
                [logging_output, sample_size],
            ))

In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 6
Instances
 Project Name: pytorch/fairseq
 Commit Name: 1082ba352c5f1d524b1fcba43ee611280b169224
 Time: 2018-09-25
 Author: edunov@apache.org
 File Name: fairseq/trainer.py
 Class Name: Trainer
 Method Name: valid_step
 Project Name: huggingface/neuralcoref
 Commit Name: 70cab1d286a8717185e5b342f1923a80fc9a90a0
 Time: 2019-10-22
 Author: svlandeg@users.noreply.github.com
 File Name: neuralcoref/train/evaluator.py
 Class Name: ConllEvaluator
 Method Name: get_max_score