// Fit classifier to the data set
clf.fit(self.training_features, self.training_classes)
all_features = input_df.drop(self.non_feature_columns, axis=1).values
input_df.loc[:, "guess"] = clf.predict(all_features)
// Store the guesses as a synthetic feature
return self._add_synth_feature(input_df, operator_args)
After Change
clf.fit(self.training_features, self.training_classes)
all_features = np.copy(input_matrix)
np.delete(all_features, non_feature_columns, axis=1)
input_matrix[:, GUESS_COL] = clf.predict(all_features)
// Store the guesses as a synthetic feature
input_matrix[:, :-1] = input_matrix[GUESS_COL]