47ba6dedb917847460b098c5f2b776a4c8bd0c1b,torchdiffeq/_impl/adjoint.py,,odeint_adjoint,#Any#Any#Any#,168

Before Change


    // Normalise to non-tupled input
    shapes, func, y0, t, rtol, atol, method, options, event_fn, decreasing_time = _check_inputs(func, y0, t, rtol, atol, method, options, event_fn, SOLVERS)

    if "norm" in options and "norm" not in adjoint_options:
        adjoint_shapes = [torch.Size(()), y0.shape, y0.shape] + [torch.Size([sum(param.numel() for param in adjoint_params)])]
        adjoint_options["norm"] = _wrap_norm([_rms_norm, options["norm"], options["norm"]], adjoint_shapes)

    ans = OdeintAdjointMethod.apply(shapes, func, y0, t, rtol, atol, method, options, event_fn, adjoint_rtol, adjoint_atol,
                                    adjoint_method, adjoint_options, t.requires_grad, *adjoint_params)

    if event_fn is None:

After Change


    shapes, func, y0, t, rtol, atol, method, options, event_fn, decreasing_time = _check_inputs(func, y0, t, rtol, atol, method, options, event_fn, SOLVERS)

    // Avoid in-place modifying a user-specified dict.
    adjoint_options = adjoint_options.copy()
    // Handle the adjoint norm function.
    state_norm = options["norm"]
    handle_adjoint_norm_(adjoint_options, shapes, state_norm)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 5

Instances


Project Name: rtqichen/torchdiffeq
Commit Name: 47ba6dedb917847460b098c5f2b776a4c8bd0c1b
Time: 2021-01-05
Author: rtqichen@gmail.com
File Name: torchdiffeq/_impl/adjoint.py
Class Name:
Method Name: odeint_adjoint


Project Name: tensorflow/hub
Commit Name: 81092be4e1e900473cd008fec50dc49c8af2eed9
Time: 2019-10-29
Author: no-reply@google.com
File Name: tensorflow_hub/keras_layer.py
Class Name: KerasLayer
Method Name: call


Project Name: Netflix/vmaf
Commit Name: dd113cd2b817d65790781dff7e99f17cf0b865d0
Time: 2019-10-05
Author: zli@netflix.com
File Name: python/src/vmaf/core/quality_runner.py
Class Name: VmafossExecQualityRunner
Method Name: _get_quality_scores