f54c2b1361fb86f55a36064158c6baa658ffffb9,examples/mnist/run.py,,,#,162
Before Change
// compute prediction
w0, b0, w1, b1 = params
layer0 = tfe.matmul(x, w0) + b0
layer1 = tfe.sigmoid(layer0 * 0.1) // input normalized to avoid large values
logits = tfe.matmul(layer1, w1) + b1
// send prediction output back to client
prediction_op = tfe.define_output(prediction_client.player_name,
logits,
After Change
with tfe.protocol.SecureNN():
batch_size = PredictionClient.BATCH_SIZE
flat_dim = ModelOwner.IMG_ROWS * ModelOwner.IMG_COLS
batch_input_shape = [batch_size, flat_dim]
model = tfe.keras.Sequential()
model.add(tfe.keras.layers.Dense(512, batch_input_shape=batch_input_shape))
model.add(tfe.keras.layers.Activation("relu"))
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 7
Instances
Project Name: mortendahl/tf-encrypted
Commit Name: f54c2b1361fb86f55a36064158c6baa658ffffb9
Time: 2019-06-26
Author: suriyaku@gmail.com
File Name: examples/mnist/run.py
Class Name:
Method Name:
Project Name: NVIDIA/waveglow
Commit Name: f1809051ef7d28c59435f36b3ab08c99a0713fdd
Time: 2018-11-14
Author: rafaelvalle@nvidia.com
File Name: glow.py
Class Name: WN
Method Name: forward
Project Name: NVIDIA/waveglow
Commit Name: 32ceb17f2a90899c952162ea44a4a42ff7f1f1fc
Time: 2018-11-12
Author: alanw@nvidia.com
File Name: glow.py
Class Name: WN
Method Name: forward