ff97a1402877d0613158b37ca7fc781d1901f951,imgaug/augmenters/overlay.py,Alpha,__init__,#Alpha#Any#Any#Any#Any#Any#Any#Any#,140
Before Change
name=None, deterministic=False, random_state=None):
super(Alpha, self).__init__(name=name, deterministic=deterministic, random_state=random_state)
if ia.is_single_number(factor):
ia.do_assert(0.0 <= factor <= 1.0, "Expected factor to have range [0, 1.0], got value %.2f." % (factor,))
self.factor = Deterministic(factor)
elif ia.is_iterable(factor):
ia.do_assert(len(factor) == 2, "Expected tuple/list with 2 entries, got %d entries." % (len(factor),))
self.factor = Uniform(factor[0], factor[1])
elif isinstance(factor, StochasticParameter):
self.factor = factor
else:
raise Exception("Expected float or int, tuple/list with 2 entries or StochasticParameter. Got %s." % (type(factor),))
ia.do_assert(first is not None or second is not None, "Expected "first" and/or "second" to not be None (i.e. at least one Augmenter), but got two None values.")
self.first = handle_children_list(first, self.name, "first")
self.second = handle_children_list(second, self.name, "second")
if per_channel in [True, False, 0, 1, 0.0, 1.0]:
self.per_channel = Deterministic(int(per_channel))
elif ia.is_single_number(per_channel):
ia.do_assert(0 <= per_channel <= 1.0)
self.per_channel = Binomial(per_channel)
else:
raise Exception("Expected per_channel to be boolean or number or StochasticParameter")
self.epsilon = 0.01
def _augment_images(self, images, random_state, parents, hooks):
result = images
After Change
name=None, deterministic=False, random_state=None):
super(Alpha, self).__init__(name=name, deterministic=deterministic, random_state=random_state)
self.factor = iap.handle_continuous_param(factor, "factor", value_range=(0, 1.0), tuple_to_uniform=True, list_to_choice=True)
ia.do_assert(first is not None or second is not None, "Expected "first" and/or "second" to not be None (i.e. at least one Augmenter), but got two None values.")
self.first = handle_children_list(first, self.name, "first")
self.second = handle_children_list(second, self.name, "second")
self.per_channel = iap.handle_probability_param(per_channel, "per_channel")
self.epsilon = 0.01
def _augment_images(self, images, random_state, parents, hooks):
In pattern: SUPERPATTERN
Frequency: 4
Non-data size: 45
Instances
Project Name: aleju/imgaug
Commit Name: ff97a1402877d0613158b37ca7fc781d1901f951
Time: 2018-09-01
Author: kontakt@ajung.name
File Name: imgaug/augmenters/overlay.py
Class Name: Alpha
Method Name: __init__
Project Name: aleju/imgaug
Commit Name: 9c5a32d33e6f78afcb3542b916c3b78f3198529b
Time: 2018-08-31
Author: kontakt@ajung.name
File Name: imgaug/augmenters/arithmetic.py
Class Name: Multiply
Method Name: __init__
Project Name: aleju/imgaug
Commit Name: db5894382a572663b57ba504b04fafdfd62a4bf6
Time: 2018-08-31
Author: kontakt@ajung.name
File Name: imgaug/augmenters/arithmetic.py
Class Name: MultiplyElementwise
Method Name: __init__
Project Name: aleju/imgaug
Commit Name: ff97a1402877d0613158b37ca7fc781d1901f951
Time: 2018-09-01
Author: kontakt@ajung.name
File Name: imgaug/augmenters/overlay.py
Class Name: Alpha
Method Name: __init__
Project Name: aleju/imgaug
Commit Name: 0e40fa3a66647e43c91f69d48da496c97ac85865
Time: 2018-08-31
Author: kontakt@ajung.name
File Name: imgaug/augmenters/arithmetic.py
Class Name: ContrastNormalization
Method Name: __init__