1d62b0c431c821671ef8f251d14cc8ae79b93c76,examples/over-sampling/plot_random_over_sampling.py,,,#,17

Before Change



print(__doc__)

sns.set()

// Define some color for the plotting
almost_black = "/�"
palette = sns.color_palette()


// Generate the dataset
X, y = make_classification(n_classes=2, class_sep=2, weights=[0.1, 0.9],
                           n_informative=3, n_redundant=1, flip_y=0,
                           n_features=20, n_clusters_per_class=1,
                           n_samples=5000, random_state=10)

// Instanciate a PCA object for the sake of easy visualisation
pca = PCA(n_components=2)
// Fit and transform x to visualise inside a 2D feature space
X_vis = pca.fit_transform(X)

// Apply the random over-sampling
ros = RandomOverSampler()
X_resampled, y_resampled = ros.fit_sample(X, y)
X_res_vis = pca.transform(X_resampled)

// Two subplots, unpack the axes array immediately
f, (ax1, ax2) = plt.subplots(1, 2)

ax1.scatter(X_vis[y == 0, 0], X_vis[y == 0, 1], label="Class /ǖ", alpha=0.5,
            edgecolor=almost_black, facecolor=palette[0], linewidth=0.15)
ax1.scatter(X_vis[y == 1, 0], X_vis[y == 1, 1], label="Class /Ǘ", alpha=0.5,
            edgecolor=almost_black, facecolor=palette[2], linewidth=0.15)
ax1.set_title("Original set")

ax2.scatter(X_res_vis[y_resampled == 0, 0], X_res_vis[y_resampled == 0, 1],
            label="Class /ǖ", alpha=.5, edgecolor=almost_black,
            facecolor=palette[0], linewidth=0.15)
ax2.scatter(X_res_vis[y_resampled == 1, 0], X_res_vis[y_resampled == 1, 1],
            label="Class /Ǘ", alpha=.5, edgecolor=almost_black,
            facecolor=palette[2], linewidth=0.15)
ax2.set_title("Random over-sampling")

plt.show()

After Change


// Two subplots, unpack the axes array immediately
f, (ax1, ax2) = plt.subplots(1, 2)

c0 = ax1.scatter(X_vis[y == 0, 0], X_vis[y == 0, 1], label="Class /ǖ",
                 alpha=0.5)
c1 = ax1.scatter(X_vis[y == 1, 0], X_vis[y == 1, 1], label="Class /Ǘ",
                 alpha=0.5)
ax1.set_title("Original set")

ax2.scatter(X_res_vis[y_resampled == 0, 0], X_res_vis[y_resampled == 0, 1],
            label="Class /ǖ", alpha=.5)
ax2.scatter(X_res_vis[y_resampled == 1, 0], X_res_vis[y_resampled == 1, 1],
            label="Class /Ǘ", alpha=.5)
ax2.set_title("Random over-sampling")

// make nice plotting
for ax in (ax1, ax2):
    ax.spines["top"].set_visible(False)
    ax.spines["right"].set_visible(False)
    ax.get_xaxis().tick_bottom()
    ax.get_yaxis().tick_left()
    ax.spines["left"].set_position(("outward", 10))
    ax.spines["bottom"].set_position(("outward", 10))
    ax.set_xlim([-6, 8])
    ax.set_ylim([-6, 6])

plt.figlegend((c0, c1), ("Class /ǖ", "Class /Ǘ"), loc="lower center",
              ncol=2, labelspacing=0.)
plt.tight_layout(pad=3)
plt.show()
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 4

Non-data size: 45

Instances


Project Name: scikit-learn-contrib/imbalanced-learn
Commit Name: 1d62b0c431c821671ef8f251d14cc8ae79b93c76
Time: 2017-03-30
Author: g.lemaitre58@gmail.com
File Name: examples/over-sampling/plot_random_over_sampling.py
Class Name:
Method Name:


Project Name: scikit-learn-contrib/imbalanced-learn
Commit Name: 1d62b0c431c821671ef8f251d14cc8ae79b93c76
Time: 2017-03-30
Author: g.lemaitre58@gmail.com
File Name: examples/over-sampling/plot_random_over_sampling.py
Class Name:
Method Name:


Project Name: scikit-learn-contrib/imbalanced-learn
Commit Name: 1d62b0c431c821671ef8f251d14cc8ae79b93c76
Time: 2017-03-30
Author: g.lemaitre58@gmail.com
File Name: examples/under-sampling/plot_cluster_centroids.py
Class Name:
Method Name:


Project Name: scikit-learn-contrib/imbalanced-learn
Commit Name: 1d62b0c431c821671ef8f251d14cc8ae79b93c76
Time: 2017-03-30
Author: g.lemaitre58@gmail.com
File Name: examples/over-sampling/plot_adasyn.py
Class Name:
Method Name:


Project Name: scikit-learn-contrib/imbalanced-learn
Commit Name: 1d62b0c431c821671ef8f251d14cc8ae79b93c76
Time: 2017-03-30
Author: g.lemaitre58@gmail.com
File Name: examples/combine/plot_smote_tomek.py
Class Name:
Method Name: