Assert that the TPOT predict_proba function returns a numpy matrix filled with probabilities(float)
tpot_obj = TPOTClassifier()
tpot_obj._optimized_pipeline = creator.Individual. \
from_string("GaussianNB(input_matrix)", tpot_obj._pset)
tpot_obj._fitted_pipeline = tpot_obj._toolbox.compile(expr=tpot_obj._optimized_pipeline)
tpot_obj._fitted_pipeline.fit(training_features, training_classes)
result = tpot_obj.predict_proba(testing_features)
After Change
Assert that the TPOT predict_proba function returns a numpy matrix filled with probabilities(float)
tpot_obj = TPOTClassifier()
np.random.seed(53)
tpot_obj._optimized_pipeline = tpot_obj._toolbox.individual()
tpot_obj._fitted_pipeline = tpot_obj._toolbox.compile(expr=tpot_obj._optimized_pipeline)
tpot_obj._fitted_pipeline.fit(training_features, training_classes)