37a57f5ad43f86dd13e1d4f35e8e1b6421e73657,examples/fcma/classification.py,,,#,24

Before Change


    mask_file = sys.argv[3]
    epoch_file = sys.argv[4]
    raw_data, labels = prepare_fcma_data(data_dir, extension, mask_file, epoch_file)
    epochs_per_subj = int(sys.argv[5])
    // no shrinking, set C=1
    use_clf = svm.SVC(kernel="precomputed", shrinking=False, C=1)
    //use_clf = LogisticRegression()

After Change



    epoch_list = np.load(epoch_file)
    num_subjects = len(epoch_list)
    num_epochs_per_subj = epoch_list[0].shape[1]

    raw_data, labels = prepare_fcma_data(data_dir, extension, mask_file, epoch_file)

    // no shrinking, set C=1
    use_clf = svm.SVC(kernel="precomputed", shrinking=False, C=1)
    //use_clf = LogisticRegression()
    clf = Classifier(use_clf, epochs_per_subj=num_epochs_per_subj)

    // doing leave-one-subject-out cross validation
    for i in range(num_subjects):
        leave_start = i * num_epochs_per_subj
        leave_end = (i+1) * num_epochs_per_subj
        training_data = raw_data[0:leave_start] + raw_data[leave_end:]
        test_data = raw_data[leave_start:leave_end]
        training_labels = labels[0:leave_start] + labels[leave_end:]
        test_labels = labels[leave_start:leave_end]
        clf.fit(training_data, training_labels)
        // joblib can be used for saving and loading models
        //joblib.dump(clf, "model/logistic.pkl")
        //clf = joblib.load("model/svm.pkl")
        print(clf.predict(test_data))
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 7

Instances


Project Name: brainiak/brainiak
Commit Name: 37a57f5ad43f86dd13e1d4f35e8e1b6421e73657
Time: 2017-01-20
Author: yidawa@gmail.com
File Name: examples/fcma/classification.py
Class Name:
Method Name:


Project Name: jhfjhfj1/autokeras
Commit Name: b115f1f721594772ca12e02dc388b1b210a2ee73
Time: 2018-05-02
Author: jin@tamu.edu
File Name: experiments/mnist.py
Class Name:
Method Name: