afc71e321e8e849d27e9d3b2f053c9ead11fd171,thinc/neural/vecs2vec.py,MeanPooling,predict,#MeanPooling#Any#,6
Before Change
class MeanPooling(Model):
name = "mean-pool"
def predict(self, X):
means = []
for x in X:
means.append(x.mean(axis=0))
return self.ops.asarray(means)
def begin_update(self, X, drop=0.0):
X, bp_dropout = self.ops.dropout(X, drop)
After Change
start = 0
for i, length in enumerate(lengths):
end = start + length
means[i] = X[start : end].mean(axis=0)
start = end
assert means.shape == (len(seqs), seqs[0].shape[1])
return means

In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 7
Instances
Project Name: explosion/thinc
Commit Name: afc71e321e8e849d27e9d3b2f053c9ead11fd171
Time: 2017-02-04
Author: honnibal@gmail.com
File Name: thinc/neural/vecs2vec.py
Class Name: MeanPooling
Method Name: predict
Project Name: scikit-learn-contrib/DESlib
Commit Name: f7a04171e58eb43dfe5b18d06c76481cdf1c5da9
Time: 2018-03-29
Author: rafaelmenelau@gmail.com
File Name: deslib/dcs/lca.py
Class Name: LCA
Method Name: estimate_competence
Project Name: Esri/raster-functions
Commit Name: e698c1f1bbab1691152743a4516cf574c406e391
Time: 2015-02-11
Author: jwasilkowski@esri.com
File Name: functions/LinearSpectralUnmixing.py
Class Name: LinearSpectralUnmixing
Method Name: updatePixels