4296a765125fff6491892a1bb70fb32ac516dae6,ch15/01_train_a2c.py,,,#,54

Before Change


                adv_v = vals_ref_v.unsqueeze(dim=-1) - value_v.detach()
                log_prob_v = adv_v * calc_logprob(mu_v, var_v, actions_v)
                loss_policy_v = -log_prob_v.mean()
                entropy_loss_v = ENTROPY_BETA * (-(torch.log(2*math.pi*var_v) + 1)/2).mean()

                loss_v = loss_policy_v + entropy_loss_v + loss_value_v
                loss_v.backward()
                optimizer.step()

                tb_tracker.track("advantage", adv_v, step_idx)

After Change


    test_env = gym.make(ENV_ID)

    net_act = model.ModelActor(envs[0].observation_space.shape[0], envs[0].action_space.shape[0])
    net_crt = model.ModelCritic(envs[0].observation_space.shape[0])
    if args.cuda:
        net_act.cuda()
        net_crt.cuda()
    print(net_act)
    print(net_crt)

    writer = SummaryWriter(comment="-a2c_" + args.name)
    agent = model.AgentA2C(net_act, cuda=args.cuda)
    exp_source = ptan.experience.ExperienceSourceFirstLast(envs, agent, GAMMA, steps_count=REWARD_STEPS)
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 7

Instances


Project Name: PacktPublishing/Deep-Reinforcement-Learning-Hands-On
Commit Name: 4296a765125fff6491892a1bb70fb32ac516dae6
Time: 2018-02-10
Author: max.lapan@gmail.com
File Name: ch15/01_train_a2c.py
Class Name:
Method Name:


Project Name: commonsense/conceptnet5
Commit Name: c7c81cdf7b8648f7f5347a7940c846b3042a098e
Time: 2014-02-24
Author: rob@luminoso.com
File Name: conceptnet5/builders/combine_assertions.py
Class Name:
Method Name: output_assertion


Project Name: PacktPublishing/Deep-Reinforcement-Learning-Hands-On
Commit Name: 99abcc6e9b57f441999ce10dbc31ca1bed79c356
Time: 2018-02-10
Author: max.lapan@gmail.com
File Name: ch15/04_train_ppo.py
Class Name:
Method Name: