f890e8c3d52a41dc36b6ee3ba0871f31e73849bc,dipy/reconst/tests/test_shm.py,,test_anisotropic_power,#,423
Before Change
assert_array_almost_equal(sh, sh2, 8)
def test_anisotropic_power():
testset = np.array([[ 2.52783730e-01, -8.63827673e-03, -1.76620393e-03,
-4.34251390e-03, -5.06066428e-03, 3.81412854e-03,
5.47631094e-03, 1.39282880e-03, -1.97130701e-03,
-2.24682506e-03, -1.53527315e-04, -2.10712616e-03,
-4.25627588e-03, -1.17619725e-03, 4.01009840e-03,
-6.47920358e-04, 8.22481678e-04, 8.23377092e-04,
-7.11836682e-04, 2.82638114e-04, 1.46455538e-03,
-4.38317576e-04, -2.61096300e-03, -1.00295214e-03,
7.23340554e-04, -5.83654797e-04, -3.58804282e-04,
-3.94789973e-04, -2.07047830e-04, 5.64046556e-05,
2.41292157e-04, -2.90961130e-04, 2.97358074e-04,
1.15252750e-04, -1.28836328e-04, -3.46523499e-04,
6.22056608e-04, 6.52724346e-05, 3.37867643e-04,
-1.78158269e-04, -8.06460277e-04, -1.61496289e-04,
1.03801834e-04, -4.04971608e-04, 4.06671521e-04],
[ 6.54906618e-01, 6.01605429e-02, -1.29095193e-03,
-5.98209383e-02, -1.68493669e-02, 7.15610018e-03,
5.75249662e-03, -1.35418171e-03, -1.00052805e-02,
-4.87658886e-03, 1.17126517e-02, 2.43934596e-03,
-3.81930503e-03, 2.04635341e-03, 2.15191399e-03,
1.45180291e-03, -2.14420615e-03, -8.67168497e-04,
-3.98567829e-04, 2.71038437e-03, 1.43256098e-03,
-2.55735319e-03, -1.22762066e-03, -2.94671979e-04,
-8.24539983e-04, -1.91217995e-03, 2.92358998e-03,
3.84784047e-04, 5.65364655e-04, -1.52953294e-04,
-7.69113245e-04, 7.86232204e-05, 4.28770877e-04,
-3.84858162e-04, 3.16806826e-04, 3.69560911e-05,
-3.77435401e-04, -9.92549109e-04, 9.46511835e-05,
-4.20370516e-05, -3.49006474e-04, 7.59378701e-04,
-1.29880688e-04, 4.27303338e-04, -6.21976709e-04],
[ 1.89360240e+00, 1.87110413e-01, 3.58681307e-02,
-9.84681046e-02, -6.31403011e-03, -3.29867297e-02,
1.14994091e-02, -3.92568546e-03, -6.85004580e-03,
-5.52995838e-03, 2.08796166e-03, -7.30827851e-03,
2.28580857e-03, -7.06024059e-03, 3.55504738e-03,
2.63670661e-03, 7.45926612e-04, -3.49921955e-03,
2.64668186e-03, -2.11425877e-03, -3.21175666e-03,
2.15584339e-03, 1.52908205e-03, 6.50053432e-03,
4.84225433e-03, 1.04335885e-03, 2.03526656e-03,
3.24381403e-03, -8.39235407e-04, 1.03430794e-03,
-1.24813979e-03, -8.71406267e-04, -4.90323771e-04,
5.53422314e-04, -1.03307848e-03, -8.26799601e-04,
-1.04932393e-03, 1.02847598e-03, 1.72438048e-03,
6.09002332e-05, -2.35245883e-04, 1.33029383e-03,
9.53928674e-04, 4.53461286e-04, -8.50660289e-04]])
answers = [0.0, 3.4198238120739317, 5.2417375088492255]
apvals = anisotropic_power(testset)
After Change
max_order = calculate_max_order(coeffs.shape[-1])
// For the case where all coeffs == 1, the ap is simply log of the
// number of even orders up to the maximal order:
analytic = (np.log(len(range(2, max_order + 2, 2))) -
np.log(norm_factor) )
answers = [analytic] * 3
apvals = anisotropic_power(coeffs, norm_factor=norm_factor)
assert_array_almost_equal(apvals, answers)
// Test that this works for single voxel arrays as well:
assert_array_almost_equal(
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 7
Instances Project Name: nipy/dipy
Commit Name: f890e8c3d52a41dc36b6ee3ba0871f31e73849bc
Time: 2015-10-19
Author: arokem@gmail.com
File Name: dipy/reconst/tests/test_shm.py
Class Name:
Method Name: test_anisotropic_power
Project Name: rusty1s/pytorch_geometric
Commit Name: 17aafdea24122bbb777f71a8ea7c2505e3fee84c
Time: 2019-03-15
Author: matthias.fey@tu-dortmund.de
File Name: torch_geometric/nn/models/autoencoder.py
Class Name: GAE
Method Name: reconstruction_loss
Project Name: MorvanZhou/tutorials
Commit Name: 447885e15243dd18d906e2e35ac34ec6dcf9a600
Time: 2016-12-30
Author: morvanzhou@hotmail.com
File Name: Reinforcement_learning_TUT/7_Policy_gradient/RL_brain.py
Class Name: PolicyGradient
Method Name: _build_net