24ca68494c32be150ce1c44c202f32af9f719742,enso/metrics/basic_seq_labeling.py,MicroCharPrecision,evaluate,#MicroCharPrecision#Any#Any#,61
Before Change
Accuracy of overlaps
def evaluate(self, ground_truth, result):
result_dict = tf_fp_fn_all_classes(*convert_to_per_char_labs(ground_truth, result))
tp, fp, fn = 0, 0, 0
for tp_i, fp_i, fn_i in result_dict.values():
tp += tp_i
After Change
tp += tp_i
fp += fp_i
fn += fn_i
if tp + fp == 0:
return 0.0
return tp/float(tp+fp)
@Registry.register_metric(ModeKeys.SEQUENCE)
class MicroCharRecall(SequenceLabelingMetric):
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances
Project Name: IndicoDataSolutions/Enso
Commit Name: 24ca68494c32be150ce1c44c202f32af9f719742
Time: 2018-12-17
Author: benlt@hotmail.co.uk
File Name: enso/metrics/basic_seq_labeling.py
Class Name: MicroCharPrecision
Method Name: evaluate
Project Name: IndicoDataSolutions/Enso
Commit Name: 24ca68494c32be150ce1c44c202f32af9f719742
Time: 2018-12-17
Author: benlt@hotmail.co.uk
File Name: enso/metrics/basic_seq_labeling.py
Class Name: MicroCharF1
Method Name: evaluate
Project Name: IndicoDataSolutions/Enso
Commit Name: 24ca68494c32be150ce1c44c202f32af9f719742
Time: 2018-12-17
Author: benlt@hotmail.co.uk
File Name: enso/metrics/basic_seq_labeling.py
Class Name: MicroCharRecall
Method Name: evaluate