7331bc49dab2d0078054b25500890f8d3eb7733e,mnist-collection/classification.py,,train,#,107
Before Change
// append F.Softmax to the prediction graph so users see intuitive outputs
runtime_contents = {
"networks": [
{"name": "Validation",
"batch_size": args.batch_size,
"outputs": {"y": F.softmax(vpred)},
"names": {"x": vimage}}],
"executors": [
{"name": "Runtime",
"network": "Validation",
After Change
monitor_verr = MonitorSeries("Test error", monitor, interval=10)
// save_nnp
contents = save_nnp({"x": vimage}, {"y": vpred}, args.batch_size)
save.save(os.path.join(args.model_save_path,
"{}_result_epoch0.nnp".format(args.net)), contents)
// Initialize DataIterator for MNIST.
from numpy.random import RandomState
data = data_iterator_mnist(args.batch_size, True, rng=RandomState(1223))
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 3
Instances
Project Name: sony/nnabla-examples
Commit Name: 7331bc49dab2d0078054b25500890f8d3eb7733e
Time: 2020-01-13
Author: Shreenidhi.Ramachnadran@sony.com
File Name: mnist-collection/classification.py
Class Name:
Method Name: train
Project Name: analysiscenter/batchflow
Commit Name: db275729aa8625f56a6b6c12d376073eafd23e8d
Time: 2019-11-26
Author: Tsimfer.SA@gazprom-neft.ru
File Name: batchflow/models/eager_torch/base.py
Class Name: EagerTorch
Method Name: save
Project Name: hanxiao/bert-as-service
Commit Name: 2bfe5bfcec7759ae022b1a479411aa7d1b8401f1
Time: 2019-05-06
Author: zyn2122@gmail.com
File Name: example/example7.py
Class Name:
Method Name: