3cba7783cb805459d26918be7a56b0e8b8fd3bc9,gan.py,GAN,train,#GAN#Any#Any#Any#,93
Before Change
gen_imgs = self.generator.predict(noise)
// Concatenate the true and generated samples
imgs_x = np.concatenate((imgs, gen_imgs), axis=0)
// The discriminator wants to label the true samples as valid (ones) and
// the generated images as fake (zeros)
valid_y = np.array([1] * half_batch + [0] * half_batch).reshape(-1, 1)
After Change
gen_imgs = self.generator.predict(noise)
// Train the discriminator
d_loss_real = self.discriminator.train_on_batch(imgs, np.ones((half_batch, 1)) )
d_loss_fake = self.discriminator.train_on_batch(gen_imgs, np.zeros((half_batch, 1)))
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
// ---------------------
// Train Generator
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 6
Instances Project Name: eriklindernoren/Keras-GAN
Commit Name: 3cba7783cb805459d26918be7a56b0e8b8fd3bc9
Time: 2017-07-17
Author: eriklindernoren@live.se
File Name: gan.py
Class Name: GAN
Method Name: train
Project Name: eriklindernoren/Keras-GAN
Commit Name: 744353138995f1b15933be6ee2d39f7b83ee1b1f
Time: 2017-07-16
Author: eriklindernoren@live.se
File Name: dcgan.py
Class Name: DCGAN
Method Name: train
Project Name: shijieS/SST
Commit Name: d59cd8d19919427a12d38f968a1d240e4c62bed1
Time: 2018-09-05
Author: shijieSun@chd.edu.cn
File Name: utils/operation.py
Class Name:
Method Name: show_batch_circle_image