3cba7783cb805459d26918be7a56b0e8b8fd3bc9,gan.py,GAN,train,#GAN#Any#Any#Any#,93

Before Change


            gen_imgs = self.generator.predict(noise)

            // Concatenate the true and generated samples
            imgs_x = np.concatenate((imgs, gen_imgs), axis=0)

            // The discriminator wants to label the true samples as valid (ones) and
            // the generated images as fake (zeros)
            valid_y = np.array([1] * half_batch + [0] * half_batch).reshape(-1, 1)

After Change


            gen_imgs = self.generator.predict(noise)

            // Train the discriminator
            d_loss_real = self.discriminator.train_on_batch(imgs, np.ones((half_batch, 1)))
            d_loss_fake = self.discriminator.train_on_batch(gen_imgs, np.zeros((half_batch, 1)))
            d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)


            // ---------------------
            //  Train Generator
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 6

Instances


Project Name: eriklindernoren/Keras-GAN
Commit Name: 3cba7783cb805459d26918be7a56b0e8b8fd3bc9
Time: 2017-07-17
Author: eriklindernoren@live.se
File Name: gan.py
Class Name: GAN
Method Name: train


Project Name: eriklindernoren/Keras-GAN
Commit Name: 744353138995f1b15933be6ee2d39f7b83ee1b1f
Time: 2017-07-16
Author: eriklindernoren@live.se
File Name: dcgan.py
Class Name: DCGAN
Method Name: train


Project Name: shijieS/SST
Commit Name: d59cd8d19919427a12d38f968a1d240e4c62bed1
Time: 2018-09-05
Author: shijieSun@chd.edu.cn
File Name: utils/operation.py
Class Name:
Method Name: show_batch_circle_image