22ccf4365af620d10387b207aa103287c34d9247,benchmarks/benchmarks/model_speed/bench_pinsage.py,,track_time,#Any#,363
Before Change
num_workers = 0
hidden_dims = 16
lr = 3e-5
num_epochs = 5
batches_per_epoch = 20000
g = dataset[0]
batch_sampler = ItemToItemBatchSampler(
g, user_ntype, item_ntype, batch_size)
neighbor_sampler = NeighborSampler(
g, user_ntype, item_ntype, random_walk_length,
random_walk_restart_prob, num_random_walks, num_neighbors,
num_layers)
collator = PinSAGECollator(neighbor_sampler, g, item_ntype, textset)
dataloader = DataLoader(
batch_sampler,
collate_fn=collator.collate_train,
num_workers=num_workers)
dataloader_test = DataLoader(
torch.arange(g.number_of_nodes(item_ntype)),
batch_size=batch_size,
collate_fn=collator.collate_test,
num_workers=num_workers)
dataloader_it = iter(dataloader)
model = PinSAGEModel(g, item_ntype, textset, hidden_dims, num_layers).to(device)
opt = torch.optim.Adam(model.parameters(), lr=lr)
model.train()
for batch_id in range(batches_per_epoch):
pos_graph, neg_graph, blocks = next(dataloader_it)
for i in range(len(blocks)):
blocks[i] = blocks[i].to(device)
pos_graph = pos_graph.to(device)
neg_graph = neg_graph.to(device)
loss = model(pos_graph, neg_graph, blocks).mean()
opt.zero_grad()
loss.backward()
opt.step()
print("start training...")
t0 = time.time()
for epoch_id in range(num_epochs):
model.train()
for batch_id in range(batches_per_epoch):
pos_graph, neg_graph, blocks = next(dataloader_it)
for i in range(len(blocks)):
blocks[i] = blocks[i].to(device)
pos_graph = pos_graph.to(device)
neg_graph = neg_graph.to(device)
loss = model(pos_graph, neg_graph, blocks).mean()
opt.zero_grad()
loss.backward()
opt.step()
t1 = time.time()
return (t1 - t0) / num_epochs
After Change
opt = torch.optim.Adam(model.parameters(), lr=lr)
model.train()
for batch_id, (pos_graph, neg_graph, blocks) in enumerate(dataloader):
for i in range(len(blocks)):
blocks[i] = blocks[i].to(device)
pos_graph = pos_graph.to(device)
neg_graph = neg_graph.to(device)
loss = model(pos_graph, neg_graph, blocks).mean()
opt.zero_grad()
loss.backward()
opt.step()
if batch_id >= 3:
break
print("start training...")
t0 = time.time()
for batch_id, (pos_graph, neg_graph, blocks) in enumerate(dataloader):

In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 6
Instances
Project Name: dmlc/dgl
Commit Name: 22ccf4365af620d10387b207aa103287c34d9247
Time: 2021-02-08
Author: wmjlyjemaine@gmail.com
File Name: benchmarks/benchmarks/model_speed/bench_pinsage.py
Class Name:
Method Name: track_time
Project Name: eriklindernoren/PyTorch-GAN
Commit Name: 24387ddc838a9eb4273c03bf19e3f35587e3f201
Time: 2018-05-07
Author: eriklindernoren@live.se
File Name: implementations/wgan/wgan.py
Class Name:
Method Name:
Project Name: uber/petastorm
Commit Name: 3e4e6a81b8dd2e6207228890189fe52390a28674
Time: 2018-09-13
Author: yevgeni@uber.com
File Name: petastorm/tests/test_weighted_sampling_reader.py
Class Name:
Method Name: test_real_reader