bf1337afb8d75f0bbd8725c14830b8798bceb33e,autokeras/net_transformer.py,,transform,#Any#,40
Before Change
def transform(model):
models = []
for index, layer in enumerate(model.layers):
if isinstance(layer, Dense):
models.append(to_deeper_dense_model(model, layer))
models.append(to_wider_dense_model(model, layer))
elif is_conv_layer(layer):
models.append(to_deeper_conv_model(model, layer))
models.append(to_wider_conv_model(model, layer))
models.append(to_skip_connection_model(model))
return models
After Change
def transform(model):
models = []
for i in range(constant.N_NEIGHBORS):
operation = randint(0, 2)
if operation == 0:
// wider
models.append(to_wider_model(model))
In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 5
Instances Project Name: keras-team/autokeras
Commit Name: bf1337afb8d75f0bbd8725c14830b8798bceb33e
Time: 2018-01-02
Author: jhfjhfj1@gmail.com
File Name: autokeras/net_transformer.py
Class Name:
Method Name: transform
Project Name: jhfjhfj1/autokeras
Commit Name: bf1337afb8d75f0bbd8725c14830b8798bceb33e
Time: 2018-01-02
Author: jhfjhfj1@gmail.com
File Name: autokeras/net_transformer.py
Class Name:
Method Name: transform
Project Name: scikit-learn/scikit-learn
Commit Name: 3250ffb785fed45712868fd618929a3015639b1c
Time: 2020-07-16
Author: 34657725+jeremiedbb@users.noreply.github.com
File Name: sklearn/cluster/tests/test_k_means.py
Class Name:
Method Name: test_weighted_vs_repeated