9cf8f6cdf6a2008843cb37da6e34b8d10353b0bf,ml/rl/preprocessing/sparse_to_dense.py,PythonSparseToDenseProcessor,process,#PythonSparseToDenseProcessor#Any#,73

Before Change


    def process(
        self, sparse_data: List[Dict[int, float]]
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        dense_data = torch.ones([len(sparse_data), len(self.feature_id_to_index)])
        dense_presence = torch.zeros(
            [len(sparse_data), len(self.feature_id_to_index)]
        ).byte()
        for i, feature_map in enumerate(sparse_data):
            assert (
                feature_map is not None
            ), f"Please make sure that features are not NULL; row {i}"
            for j, value in feature_map.items():
                j_index = self.feature_id_to_index.get(j, None)
                if j_index is None:
                    continue
                dense_data[i][j_index] = value
                dense_presence[i][j_index] = 1
        if self.set_missing_value_to_zero:
            // When we set missing values to 0, we don"t know what is and isn"t missing
            dense_presence = dense_data != 0.0
        return (dense_data, dense_presence)

After Change


        // Add columns identified by normalization, but not present in batch
        for col in self.sorted_features:
            if col not in state_features_df.columns:
                state_features_df[col] = missing_value
        values = torch.from_numpy(
            state_features_df[self.sorted_features].values
        ).float()
        if self.set_missing_value_to_zero:
            // When we set missing values to 0, we don"t know what is and isn"t missing
            presence = torch.ones_like(values, dtype=torch.bool)
        else:
            presence = values != missing_value
        return values, presence
Italian Trulli
In pattern: SUPERPATTERN

Frequency: 3

Non-data size: 8

Instances


Project Name: facebookresearch/Horizon
Commit Name: 9cf8f6cdf6a2008843cb37da6e34b8d10353b0bf
Time: 2019-12-12
Author: kittipat@fb.com
File Name: ml/rl/preprocessing/sparse_to_dense.py
Class Name: PythonSparseToDenseProcessor
Method Name: process


Project Name: HyperGAN/HyperGAN
Commit Name: ee19c97fefd74ce588428a96e157bb826c0a450c
Time: 2020-12-20
Author: martyn@255bits.com
File Name: hypergan/samplers/aligned_sampler.py
Class Name: AlignedSampler
Method Name: _sample


Project Name: tensorflow/ranking
Commit Name: 6bf3f51cd0a312da842157665663c2dad9983248
Time: 2021-01-29
Author: xuanhui@google.com
File Name: tensorflow_ranking/python/losses_impl.py
Class Name: ClickEMLoss
Method Name: _compute_latent_prob