87601dbf79396f79bbc3af59b9627b4bd1adef44,stellargraph/layer/graphsage.py,GraphSAGEAggregator,call,#GraphSAGEAggregator#Any#,160
 Before Change 
        // x[1]: neighbour vector (batch_size, head size, neighbours, feature_size)
        x_self, x_neigh = x
        if self._build_mlp_only:
            return self.apply_mlp(x_self, **kwargs)
        // Weight maxtrix multiplied by self features
         from_self = K.dot(x_self, self.w_self) 
        // If there are neighbours aggregate over them
        from_neigh = self.aggregate_neighbours(x_neigh)
        h_out = K.concatenate([from_self, from_neigh], axis=2)
        // Finally, add bias and apply activation
        if self.has_bias:
            h_out = self.act(h_out + self.bias)
        else:
            h_out = self.act(h_out) 
        return h_out
    def compute_output_shape(self, input_shape):After Change 
        
        // If a neighbourhood dimension exists for the group, aggregate over the neighbours
        // otherwise create a simple layer.
        sources = [] 
        for ii, x in enumerate(inputs):
            // If the group is included, apply aggregation and collect the output tensor
            // otherwise, this group is ignored
            if self.included_weight_groups[ii]:
                x_agg = self.group_aggregate(x, group_idx=ii)
                sources.append(x_agg) 
        // Concatenate outputs from all groups
        // TODO: Generalize to sum a subset of groups.
        h_out = K.concatenate(sources, axis=2)In pattern: SUPERPATTERN
Frequency: 3
Non-data size: 8
Instances  Project Name: stellargraph/stellargraph
 Commit Name: 87601dbf79396f79bbc3af59b9627b4bd1adef44
 Time: 2019-09-23
 Author: 52440942+geoffj-d61@users.noreply.github.com
 File Name: stellargraph/layer/graphsage.py
 Class Name: GraphSAGEAggregator
 Method Name: call
 Project Name: erichson/ristretto
 Commit Name: 83579d7761d6bc995e1e6e90cd376191e648081e
 Time: 2018-03-07
 Author: Benli11@users.noreply.github.com
 File Name: ristretto/nmf/rnmf_fhals.py
 Class Name: 
 Method Name: rnmf_fhals
 Project Name: scikit-learn-contrib/categorical-encoding
 Commit Name: 9da9c8edd24bede6eeeeea8739835ea53ca58cbc
 Time: 2018-10-21
 Author: jcastaldo08@gmail.com
 File Name: category_encoders/one_hot.py
 Class Name: OneHotEncoder
 Method Name: reverse_dummies